SEARCH

Found 65 related files. Current in page 1

senarai kosa kata luas

SMNPTN IPS 2013
by top markotop 0 Comments favorite 10 Viewed Download 0 Times

KATA PENGANTAR Puji syukur kehadirat Tuhan Yang Maha Esa, Allah SWT yang selalu melimpahkan rahmat-Nya kepada kita semua. Alhamdulillah tim penyusun telah berhasil menyelesaikan penyusunan pembahasan SBMPTN, walaupun buku ini masih jauh dari kesempurnaan. di SBMPTN (d/h SNMPTN) sehingga soal yang akan keluar di tahun berikutnya dapat diprediksi maka dengan panduan buku ini diharapkan siswa lebih siap menghadapi ujian masuk PTN. SBMPTN merupakan kegiatan seleksi ujian masuk PTN dengan tipe soal, yaitu TPA (Tes Po- Buku ini dirancang dalam upaya untuk menunjang pelajaran sekolah dalam bidang studi IPA sebagai kiat sukses menembus PTN. Setelah memahami konsep materi maka perlu melatih diri dengan soal-soal latihan. Buku ini memuat kumpulan soal dan pembahasan soal–soal SNMPTN mulai dari tahun 2008 sampai tahun 2012. Penyelesaian soal dibahas dengan pembahasan sederhana, praktis, pendekatan konseptual, dan sistematis. Dengan latihan soal akan membantu siswa memahami karakteristik tren soal-soal yang sering keluar tensial Akademik), Kemampuan Dasar (Matematika Dasar, Bahasa Indonesia, dan Bahasa Inggris) serta Kemampuan IPA (Matematika, Fisika, Kimia, dan Biologi) atau kemampuan IPS (Ekonomi, Sejarah, Geografi, dan Sosiologi). Buku ini hadir untuk kelas 3 SMA/MA/SMK yang ingin melanjutkan studi ke PTN. Tim Penyusun sangat paham bahwa buku ini masih banyak kekurangan. Oleh karena itu, mohon kritikan dan saran demi perbaikan buku ini.

SMART SOLUTION Tes Potensi Akademik SBMPTN 2013

Rangkuman Materi SBMPTN 2013 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai Teori Ringkas dan Pembahasan Soal Tes Potensi Akademik (TPA) Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Ringkasan Materi SBMPTN Tes Potensi Akademik (TPA) Penalaran Verbal (Sinonim, Antonim, dan Analogi) By Pak Anang (http://pak-anang.blogspot.com) A. PENALARAN VERBAL 1. SINONIM (Padanan Kata) Soal-soal sinonim, kemampuan yang dituntut adalah adik-adik mampu mencari arti dari sebuah kata pada pilihan jawaban yang tersedia. Tips agar adik-adik mudah menyelesaikan soal tentang sinonim adalah sering membaca. Nah, saat menemukan kata-kata asing, jangan ditinggalkan begitu saja, catat dan coba mencari padanan katanya di Kamus Besar Bahasa Indonesia. TRIK SUPERKILAT: Seringkali ada pilihan jawaban yang hampir mirip dengan soal. Biasanya jawaban ini adalah diberikan sebagai jawaban jebakan. Contoh soal sinonim: PARTIKELIR = .... A. Tukang parkir B. Partisan C. Partisi D. Swasta E. Enterprener Pembahasan: Jawaban B dan C mirip dengan kata yang digunakan pada soal. Biasanya ini mudah kita eliminasi sebagai jebakan jawaban..... Sehingga mempemudah kita dalam menjawab soal sinonim ini. Jawaban yang tepat adalah ”swasta”. 2. ANTONIM (Lawan Kata) Soal tentang antonim ini kebalikan dari sinonim. Dalam soal antonim adik-adik dituntut untuk mencari lawan kata dari soal yang diberikan. Contoh soal antonim: TERKATUNG A.Melayang B.Pasti C.Ombak D.Terperosok E.Terbenam

soal dan solusi siap mtk ipa sbmptn 2013 - tito math's blog

SOAL DAN SOLUSI SIAP SBMPTN 2013 MATEMATIKA IPA 1. Jika 0  b  a dan a2  b2  4ab maka a+b a-b 2. = 2 (A) (B) (C) (C) 2 (D) 3 3 (D) 5 (E) 20 3 (E) 4 cos 77o cos 33o  sin77o sin33o  ... . 6. Jika persamaan x2  4x  k  1  0 mempunyai akar-akar real  dan , maka (D) cos 20o (E) sin 20o (A) cos 20o (B) cos 70o (C) sin 70o 3. Dari 10 pasangan suami istri akan dibentuk tim beranggotakan 6 orang terdiri atas 2 pria dan 4 wanita dengan ketentuan tak boleh ada pasangan suami istri. Banyaknya tim yang dapat dibentuk adalah (A) 3150 (D) 56021 (B) 6300 (E) 141120 (C) 12300 nilai k yang memenuhi (A) (B) (C) (D) (E) (B) (C) (D) 32  3 9 (E) 25  3 16  3 5. Daerah D1 dibatasi oleh parabola y  x2 , garis y  4 , dan garis x = c dan daerah D2 dibatasi oleh parabola y = x2, garis x = c, dan sumbu x. Jika luas D1 = luas D2, maka luas siku empat yang dibatasi oleh sumbu x, sumbu y, garis y = 4 dan garis x = c adalah y = x2 y 4 y  3  3(x  3) (B) y  3  3(x  3) (E) y  33  3(x  3) (C) y  33  3(x  3) 8. Jika 36x  2  6x 1  32  0 akar x1 dan x 2 . x1  x2 Jika x1  x2 , maka 9. 1  cos 2 4x  …. x 0 1  cos 6x 8 (A) 9 5 (B) 6 1 (C)  3 lim (D)  (E) (B) 4 3 8 3   (B) 2 14  dan  c // a Jika  14 7 3 ˆ a  3ˆ  ˆ  2k i j c  b  28 , maka | c | (A) 5 6  ˆ b  2 ˆ  5 ˆ  2k . i j (A) …. (D) 3log 2 (E) 2log3 (A) 1,5 (B) 2 (C) 2,5  c adalah … 5  k  1 atau k  3 5  k  1 atau k  3 k  1 atau 3  k  5 k  1 atau 3  k  5 k  5 atau 1  k  3 10. Diketahui x 1 1  2   f(x) (x  3) 7. Suku banyak dibagi  x3  3x  33 dan memberikan hasil bagi sisa 3 . Garis g menyinggung kurva y  f(x) di titik berabsis 3, maka persamaan garis g adalah …. (A) y  3  3(x  3) (D) 4. Suatu kerucut memiliki panjang jari-jari r dan tinggi t, Jika r  t  6 , maka nilai maksimum volum kerucut adalah … (A) 12 16 3 dan = …. (D) 4 14 (E) 5 14 (C) 3 14 Halaman 1 dari 14 halaman SOAL DAN SOLUSI SIAP SBMPTN 2013 y  kx

Kunci Jawaban dan Pembahasan MAT VIII A

Kunci Jawaban dan Pembahasan PR Matematika Kelas VIII 1 Bab I Faktorisasi Bentuk Aljabar 9. Jawaban: d 32p2qr 3 32p2qr3 : 96pq2r2 = 96pq2r2 32 = 96 × p(2 – 1)q(1 – 2)r(3 – 2) 1 = 3 pq–1r A. Pilihan Ganda 1. Jawaban: c 5p2 – 7p + 8 – p2 + 3p – 10 = 5p2 – p2 – 7p + 3p + 8 – 10 = 4p2 – 4p – 2 2. Jawaban: c 5(3x – 1) – 12x + 9 = 15x – 5 – 12x + 9 = (15 – 12)x – 5 + 9 = 3x + 4 3. Jawaban: d 8(3x + 6y) + 3(2x – 6y) = 24x + 48y + 6x – 18y = 30x + 30y 4. Jawaban: a (x2 – 4x + y) – (2x – 2y + x2) = x2 – 4x + y – 2x + 2y – x2 = (1 – 1)x2 + (–4 – 2)x + (1 + 2)y = –6x + 3y 5. Jawaban: b 5a2(2a3 + 11c) = 5a2(2a3) + 5a2(11c) = 10a5 + 55a2c 6. Jawaban: d (x + 2)(2x – 1) = x(2x – 1) + 2(2x – 1) = 2x2 – x + 4x – 2 = 2x2 + 3x – 2 7. Jawaban: a (2x – 3)(–3x + 5) = 2x(–3x + 5) – 3(–3x + 5) = –6x2 + 10x + 9x – 15 = –6x2 + 19x – 15 8. Jawaban: c (3y – 4)(4x2 + 6xy + y2) = 3y(4x2 + 6xy + y2) – 4(4x2 + 6xy + y2) = 12x2y + 18xy2 + 3y3 – 16x2 – 24xy – 4y2 2 Kunci Jawaban dan Pembahasan PR Matematika Kelas VIII pr = 3q 10. Jawaban: c 3x 2 : 6x 2 4 3 3 = 2 x : 2 x2 = 3 x 2 3 2 x 2 = 1 x x2 = x 11. Jawaban: c –(8p3qr2)3 = –83(p3)3q3(r2)3 = –512p9q3r6 12. Jawaban: c (3x – 4y)2 = (3x – 4y)(3x – 4y) = 3x(3x – 4y) – 4y(3x – 4y) = 9x2 – 12xy – 12xy + 16y2 = 9x2 – 24xy + 16y2 13. Jawaban: a (6x + 5)2 + (–7x – 4)2 = (36x2 + 60x + 25) + (49x2 + 56x + 16) = 36x2 + 49x2 + 60x + 56x + 25 + 16 = 85x2 + 116x + 41 14. Jawaban: b (a + b)3 = a3 + 3a2b + 3ab2 + b3 (x – 4)3 = (x + (–4))3 = x3 + 3x2(–4) + 3x(–4)2 + (–4)3 = x3 – 12x2 + 48x – 64 15. Jawaban: d 4r 2 (r − 3) 4r2(r – 3) : r(r – 3)2 = r(r − 3)2 4r = r−3 16. Jawaban: b 24x6q7 : (4q2x3 × 3qx) = 24x6q7 4q2x 3 × 3qx 24 x6 = q7 = 12 × 4 × q3 x = 2x2q4 24x 6q7 12q3 x 4 17. Jawaban: b 28p5q7r4 b. : 6q2r3p4) = 28p5q7r4 = × (3q2pr3 14p2q7r4 × 18. Jawaban: d Keliling = 2((2x + 2) + (2x – 1)) = 2(4x + 1) = (8x + 2) cm 19. Jawaban: b s = (2x – 3) cm L = s2 = (2x – 3)2 = (2x)2 + 2(2x)(–3) + (–3)2 = (4x2 – 12x + 9) cm2 20. Jawaban: c = (x – 2) m p = (x – 2) + 6 m = (x + 4) m Luas = p × = (x + 4)(x – 2) = (x2 + 2x – 8) m2 B. Uraian 1. a. 6a + 3a – 9a + 7b = (6 + 3 – 9)a + 7b = 7b b. 10x2 – 3xy – 5y2 – 18x2 + 5xy + y2 = (10 – 18)x2 + (5 – 3)xy + (1 – 5)y2 = –8x2 + 2xy – 4y2 c. d. 2. a. b. c. d. 3. a. 4 + 3p + 5(p – 2) = 4 + 3p + 5p – 10 = 8p – 6 (4p – 11q – 9r) – (9p + 8q – 8r) = 4p – 9p – 11q – 8q – 9r + 8r = (4 – 9)p – (11 + 8)q – (9 – 8)r = –5p – 19q – r c. (17y2 + 11y + 18) – (15y2 + 2y – 24) = 17y2 – 15y2 + 11y – 2y + 18 + 24 = (17 – 15)y2 + (11 – 2)y + 18 + 24 = 2y2 + 9y + 42 d. 15(4y2 + 6y + 3) + 11(2y2 – 4y – 5) = 60y2 + 90y + 45 + 22y2 – 44y – 55 = 60y2 + 22y2 + 90y – 44y + 45 – 55 = (60 + 22)y2 + (90 – 44)y + 45 – 55 = 82y2 + 46y – 10 1 2p3 4. a. b. (2x – 6)(5x – 2) = 2x(5x – 2) – 6(5x – 2) = 10x2 – 4x – 30x + 12 = 10x2 – 34x + 12 c. (3x – 4y)(12x2 – 16xy + 9y2) = 3x(12x2 – 16xy + 9y2) – 4y(12x2 – 16xy + 9y2) = 36x3 – 48x2y + 27xy2 – 48x2y + 64xy2 – 36y3 = 36x3 – (48 + 48)x2y + (27 + 64)xy2 – 36y3 = 36x3 – 96x2y + 91xy2 – 36y3 d. 8p4qr2 : 2pq2r2 2(a – 3b) + 3(2a + 7b) = 2a – 6b + 6a + 21b = 2a + 6a – 6b + 21b = 8a + 15b (3r – 9s) + (7r + 16s) = 3r – 9s + 7r + 16s = 3r + 7r + 16s – 9s = 10r + 7s (3a + 9 – 6b) + (11b + 7a – 5) = 3a + 9 – 6b + 11b + 7a – 5 = 3a + 7a – 6b + 11b + 9 – 5 = 10a + 5b + 4 (–x2 + 6xy + 3y2) + (3x2 – 4xy – 7y2) = –x2 + 6xy + 3y2 + 3x2 – 4xy – 7y2 = –x2 + 3x2 + 6xy – 4xy + 3y2 – 7y2 = 2x2 + 2xy – 4y2 6(2y2 – 3x + 6) + 7(3y2 – 2x + 6) = 12y2 – 18x + 36 + 21y2 – 14x + 42 = 12y2 + 21y2 – 18x – 14x + 36 + 42 = 33y2 – 32x + 78 (10a + 9b – 12) – (9a + 8b – 2) = 10a – 9a + 9b – 8b – 12 + 2 = (10 – 9)a + (9 – 8)b – 12 + 2 = a + b – 10 –5a2(2a2 + 8a2b – 5ab2) = (–5 × 2)a4 – (5 × 8)a4b + (–5 × (–5))a3b2 = –10a4 – 40a4b + 25a3b2 8p4 qr 2 = 2pq2r 2 8 = 2 × p4 p × 1 q q2 = 4 × p3 × q × 1 5. a. b. c. d. r2 r2 4p3 = q × (4p2q)3 = 43p6q3 = 64p6q3 (5a + 3b)2 = (5a)2 + 2(5a)(3b) + (3b)2 = 25a2 + 30ab + 9b2 2 2 (7a – 4a) = (7a2)2 – 2(7a2)(4a) + (4a)2 = 49a4 – 56a3 + 16a2 (2q + 3p – 7)2 = (2q + 3p – 7)(2q + 3p – 7) = 2q(2q + 3p – 7) + 3p(2q + 3p – 7) – 7(2q + 3p – 7) = 4q2 + 6pq – 14q + 6pq + 9p2 – 21p – 14q – 21p + 49 = 4q2 + 12pq – 28q – 42p + 9p2 + 49 (3a + 4)4 = 1(3a)4 + 4(3a)3(4) + 6(3a)2(4)2 + 4(3a)(4)3 + 1(4)4 Suku ke-3: 6(3a)2(4)2 = 6 × 9a2 × 16 = 864a2 Jadi, koefisien suku ke-3 yaitu 864.

PEMANFAATAN KOLEKSI BUKU TEKS PELAJARAN PADA ... - digilib

Ika Sukmawati (04141832). Pemanfaatan Koleksi Buku Teks Pelajaran Pada Perpustakaan Madrasah Aliyah Negeri Yogyakarta III Sebagai Sumber Belajar Siswa Kelas XI Tahun Ajaran 2008/2009. Penelitian tentang Pemanfaatan Koleksi Buku Teks Pelajaran Pada Perpustakaan Madrasah Aliyah Negeri Yogyakarta III Sebagai Sumber Belajar Siswa Kelas XI Tahun Ajaran 2008/2009 bertujuan untuk mengetahui Bagaimana tingkat pemanfaatan buku teks pada perpustakaan MAN Yogyakarta III, alasan siswa menggunakan koleksi Buku Teks dan Buku Teks mata pelajaran apa yang sering digunakan siswa berdasarkan jurusanya, penelitian ini menitik beratkan pada kebutuhan, motif, minat siswa menggunakan buku teks pelajaran, selain itu kelengkapan koleksi, keterampilan pustakawan serta ketersediaan fasilitas. Penelitian ini menggunakan metode deskriptif kuantitatif. Penelitian ini merupakan penelitian populasi sehingga tidak memerlukan sampel dalam pengujian validitas dan reliabilitas instrumen yang digunakan. Teknik pengumpulan data yang digunakan dalam penelitian ini adalah Dokumentasi, wawancara, angket dan observasi. Analisa data yang digunakan adalah analisa deskriptif kuantitatif yang disajikan dalam bentuk tabel distribusi frekuensi dan prosentase. Hasil penelitian menunjukkan bahwa secara keseluruhan mayoritas siswa memanfaatkan buku teks pelajaran dengan baik sebanyak 54,4%. Sedangkan alasan siswa menggunakan buku teks pelajaran dapat dilihat dari faktor internal dan faktor eksternal, dalam fakor internal terdiri dari kebutuhan, minat, dan motif. Sedangkan faktor eksternalnya kelengkapan koleksi, keterampilan pustakawan dan ketersediaan fasilitas. Dilihat dari faktor kebutuhan mayoritas siswa menyatakan kebutuhannya sedang (48,7%), dilihat dari motifnya mayoritas siswa menyatakan motifnya sedang (38,0%), sedangkan dari minat mayoritas siswa menyatakan minatnya tinggi (42,4%). Faktor eksternal dilihat dari kelengkapan koleksinya mayoritas siswa menyatakan koleksinya lengkap (51,3%), dari keterampilan pustakawan mayoritas siswa menyatakan terampil (49,4%), sedangkan ketersediaan fasilitas penelusuran mayoritas siswa menyatakan tersedia (40,5%). Koleksi yang sering dibaca siswa IPA adalah mata pelajaran Biologi (52,0%) sedangkan yang sering dibaca juga mata pelajaran Biologi (48,0%). Pada siswa IPS buku yang sering dibaca adalah Akuntansi (35,2%), sedangkan yang sering dipinjam juga Akuntansi (43,5%). Kesimpulan akhir penelitian ini adalah bahwa pada umumnya pemanfaatan koleksi buku teks pelajaran pada perpustakaan MAN Yogyakarta III telah dimanfaatkan dengan baik sebagai sumber belajar siswa, baik itu untuk mengerjakan tugas dari guru maupun untuk mengerjakan tugas rumah. Namun agar siswa lebih memanfaatkan buku teks maka koleksi perpustakaan perlu ditambah lagi dengan koleksi-koleksi yang baru agar siswa tidak ketinggalan informasi. (Kata kunci: Koleksi Buku Pelajaran, Perpustakaan )

Kelas III_SD_IPA_Sularmi.pdf
by cicak 0 Comments favorite 11 Viewed Download 0 Times

Puji syukur kami panjatkan ke hadirat Allah SWT, berkat rahmat dan karunia-Nya, Pemerintah, dalam hal ini, Departemen Pendidikan Nasional, pada tahun 2008, telah membeli hak cipta buku teks pelajaran ini dari penulis/penerbit untuk disebarluaskan kepada masyarakat melalui situs internet (website) Jaringan Pendidikan Nasional. Buku teks pelajaran ini telah dinilai oleh Badan Standar Nasional Pendidikan dan telah ditetapkan sebagai buku teks pelajaran yang memenuhi syarat kelayakan untuk digunakan dalam proses pembelajaran melalui Peraturan Menteri Pendidikan Nasional Nomor 34 Tahun 2008. Kami menyampaikan penghargaan yang setinggi-tingginya kepada para penulis/penerbit yang telah berkenan mengalihkan hak cipta karyanya kepada Departemen Pendidikan Nasional untuk digunakan secara luas oleh para siswa dan guru di seluruh Indonesia. Buku-buku teks pelajaran yang telah dialihkan hak ciptanya kepada Departemen Pendidikan Nasional ini, dapat diunduh (down load), digandakan, dicetak, dialihmediakan, atau difotokopi oleh masyarakat. Namun, untuk penggandaan yang bersifat komersial harga penjualannya harus memenuhi ketentuan yang ditetapkan oleh Pemerintah. Diharapkan bahwa buku teks pelajaran ini akan lebih mudah diakses sehingga siswa dan guru di seluruh Indonesia maupun sekolah Indonesia yang berada di luar negeri dapat memanfaatkan sumber belajar ini. Kami berharap, semua pihak dapat mendukung kebijakan ini. Kepada para siswa kami ucapkan selamat belajar dan manfaatkanlah buku ini sebaik-baiknya. Kami menyadari bahwa buku ini masih perlu ditingkatkan mutunya. Oleh karena itu, saran dan kritik sangat kami harapkan.

pengadaan barang/jasa publik dalam rangka pelaksanaan kerja ...

Assalamu’alaikum Warahmatullahi Wabarakatuh Tiada kata-kata indah yang pantas diucapkan selain puji syukur Alhamdulillah, kepada Allah Subhanahuwata’ala, sebab dengan rahmat, nikamat dan karuniaNya penulis dapat menyelesaikan tulisan ini. Walaupun dalam bentuk dengan isi sederhana yang terangkum dalam tesis berjudul “Pengadaan Barang/Jasa Publik dalam Rangka Pelaksanaan Kerja Sama Daerah”, sebagai persyaratan untuk menyelesaikan studi Pasca Sarjana Program Studi Magister Kenotariatan Universitas Diponegoro Semarang Tahun 2008. Sebagai insane yang lemah tentunya banyak sekali kekurangan-kekurangan dan keterbatasan yang terdapat pada diri penulis tidak terkecuali pada penulisan tesis ini, oleh karena itu penulis sangat mengharapkan koreksi, kritik saran dan perbaikan dari berbagai pihak agar penulisan tesis ini lebih baik. Tidak sedikit bantuan dari berbagai pihak yang diberikan kepada penulis baik dari segi moril dan segi materiil. Oleh karena itu dengan segala ketulusan hati penulis mengucapkan beribu-ribu terima kasih atas segala bantuan dan dukungan yang selama ini penulis terima sehingga penulisan tesis ini dapat diselesaikan. Pada kesempatan yang ini, ijinkanlah penulis mengucapkan rasa terima kasih kepada : 1. Bapak H. Mulyadi,S.H.,M.S. selaku Ketua Program pada Program Studi Magister Kenotariatan Universitas Diponegoro Semarang, yang selalu memberikan motivasi dalam menyelesaikan tesis ini. 2. Bapak Dr.R.Benny,S.H.,C.N.,M.Hum., sebagai Dosen Pembimbing Utama dalam penulisan tesis ini yang telah banyak membantu memberikan bimbingan dalam menyelesaikan penulisan ini. 3. Bapak Yunanto,S.H.M.Hum., sebagai Sekretaris I Bidang Akademik, sekaligus sebagai Dosen Penguji di Program Kenotariatan Universitas Diponegoro. 4. Bapak Sonhaji,S.H.,M.S., dan Bapak Hendro Saptono,S.H.,M.Hum., sebagai Dosen Penguji di Program Kenotariatan Universitas Diponegoro. 5. Semua Narasumber selama kami melaksanakan penelitian, seperti Bapak Joko Pranowo,S.H.,M.H., Kepala Bappeda Kabupaten Pekalongan, Bapak Achmad Mas’udi,S.H.,.M.M., Kepala Dinas Pendapatan Daerah Kabupaten Pekalongan, Bapak Harry Suminto,S.H.,M.H., Kepala Bagian Hukum Setda Kabupaten Pekalongan, Bapak Drs.H. Abidin Noor Kepala Bagian Aset Daerah Kabupaten Pekalongan dan Bapak Ir.Agus Prijambodo, Kepala Bagian Program Setda Kabupaten Pekalongan, yang telah memberikan bimbingan dan arahan dalam penulisan tesis ini. 6. Teristimewa untuk suamiku Abdul Aziz Sutanto,S.Sos. dan anak-anakku tersayang Iftita Rakhma Ikrima dan Shoffarisna Ithma’anna atas doa dan dukungannya selama ini sehingga penulis dapat menyelesaikan pendidikan di magister Kenotariatan Universitas Diponegoro Semarang. 7. Sahabat-sahabatku dan rekan-rekan Mahasiswa Program Magister Kenotariatan Universitas Diponegoro Angkatan 2006. 8. Semua pihak yang belum sempat penulis sebutkan dan telah banyak membantu penyelesaian tesis ini. Akhirnya, semoga amal baik mereka mendapat imbalan dan pahala dari Allah SWT. Amien. Semarang, penulis April 2008

70 PERSEN KORUPSI INDONESIA DARI PENGADAAN BARANG ...

Indonesia Procurement Watch (IPW) menyatakan dari 385 kasus korupsi i yang ditangani Komisi Pemberantasan Korupsi (KPK), 70 persennya merupakan kasus pengadaan barang dan jasa. "Tingginya angka kasus yang ditangani KPK menjadi indikator proyek pengadaan barang dan jasa merupakan lahan subur praktik korupsi di Indonesia," kata Direktur Program IPW Hayie Muhammad saat menjadi pembicara pelatihan peliputan pengadaan barang dan jasa di Surabaya, Sabtu (6/7). Menurut Hayie Muhammad, selama ini dalam perencanaan pengadaan barang dan jasa di hampir semua kantor pemerintah khususnya daerah, tidak ada pengawasan maksimal sehingga dimanfaatkan oleh pihak-pihak tertentu untuk melakukan keuntungan pribadi. "Umpamanya ada pesanan-pesanan dari pihak-pihak lain seperti Dewan Perwakilan Rakyat (DPR), Dewan Perwakilan Rakyat Daerah (DPRD) untuk memasukkan nilai pekerjaan atau proyek itu di atas Harga Perkiraan Sendiri (HPS)," kata Hayie Muhammad. Itu sebabnya, lanjut Hayie Muhammad, banyak ditemukan bahwa HPS itu lebih mahal dari pada harga pasar yang sebenarnya. "Itulah yang dibagi-bagi mereka untuk sebagai lahan korupsi mereka," katanya. Selama ini, kata dia, proyek pengadaan barang dan jasa menghabiskan anggaran Anggaran Pendapatan dan Belanja Negara (APBN) ii sebesar 30 persen setiap tahunnya, dengan peningkatan sekitar 10 persen per tahun. Selain KPK, kata dia, kejaksaan juga telah mengungkap sekitar 2.000 kasus pengadaan barang dan jasa yang terindikasi korupsi, dengan pemborosan anggaran mencapai 30 hingga 40 persen. Hayie Muhammad menambahkan, proses pengawasan mulai awal perencanaan...

SNMPTN 2012 Matematika - zenius.net

SNMPTN 2012 Matematika Doc. Name: SNMPTN2012MATDAS999 Version : 2013-04 halaman 1 01. Jika a dan b adalah bilangan bulat positif yang memenuhi ab = 220 - 219, maka nilai a+b adalah …. (A) 3 (B) 7 (C) 19 (D) 21 (E) 23 02. Jika 4log3 = k , maka 2log27 adalah … (A) k 6 (B) (C) (D) (E) k 6k 6 k6 k 03. Jika p+1 dan p-1 adalah akar-akar persamaan x2 - 4x + a = 0, maka nilai a adalah …. (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 04. Jika f adalah fungsi kuadrat yang grafiknya melalui titik (1,0), (4,0), dan (0,-4), maka nilai f(7) adalah …. (A) -16 (B) -17 (C) -18 (D) -19 (E) -20 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 2 05. Semua nilai x yang memenuhi (x + 3)(x - 1) ≥ (x - 1) adalah (A) 1 ≤ x ≤ 3 (B) x ≤ -2 atau x ≥ 1 (C) -3 ≤ x ≤ -1 (D) -2 ≥ x atau x ≥ 3 (E) -1 ≥ x atau x ≥ 3 06. Jika 2x - z = 2, x + 2y = 4, dan y + z = 1, maka nilai 3x + 4y + z adalah …. (A) 4 (B) 5 (C) 6 (D) 7 (E) 8 07. Jika diagram batang di bawah ini memperlihatkan frekuensi kumulatif hasil tes matematika siswa kelas XII, maka persentase siswa yang memperoleh nilai 8 adalah…. (A) (B) (C) (D) (E) 12 % 15 % 20 % 22 % 80 % Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 3 08. Ani telah mengikuti tes matematika sebanyak n kali. Pada tes berikutnya ai memperoleh nilai 83 sehingga nilai rata-rata Ani aalah 80, tetapi jika nilai tes tersebut adalah 67, maka rata-ratanya adalah 76. Nilai n adalah …. (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 09. Nilai maksimum fungsi objektif (tujuan) f(x,y) = 3x + 2y dengan kendala x + 2y ≤ 12, x ≥ 2, dan y ≥ 1 adalah …. (A) 16 (B) 18 (C) 32 (D) 36 (E) 38 10. Jika dan , maka determinan matriks AB - C adalah …. (A) -5 (B) -4 (C) 5 (D) 6 (E) 7 11. Agar tiga bilangan a + 2, a - 3, a - 4 merupakan barisan aritmatika, maka suku ke dua harus ditambah dengan …. (A) -3 (B) -2 (C) -1 (D) 1 (E) 2 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 4 12. Jika suku pertama barisan aritmatika adalah -2 dengan beda 3, Sn adalah jumlah n suku pertama deret aritmatika tersebut, dan Sn+2 - Sn = 65, maka nilai n adalah …. (A) 11 (B) 12 (C) 13 (D) 14 (E) 15 13. Jika suatu persegi dengan sisi satu satuan dibagi menjadi 5 persegi panjang dengan luas yang sama seperti ditunjukkan pada gambar di bawah ini, maka panjang ruas garis AB adalah … (A) 3 5 (B) 2 3 (C) 2 5 (D) (E) 1 5 1 5 14. Di suatu kandang tedapat 40 ekor ayam, 15 ekor diantaranya jantan. Di antara ayam jantan tersebut, 7 ekor berwarna putih. Jika banyak ayam berwarna putih adalah 22 ekor, maka banyak ayam betina yang tidak berwarna putih adalah … (A) 5 (B) 7 (C) 8 (D) 10 (E) 15 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 5 15. Jika f(x) = ax + 3, a ≠ 0 dan f-1 (f-1(9)) = 3, maka nilai a2 + a + 1 adalah … (A) 11 (B) 9 (C) 7 (D) 5 (E) 3 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 ...

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 1. Lingkaran (x + 6)2 + (y + 1)2 = 25 menyinggung garis y = 4 di titik... A. ( -6, 4 ) B. ( 6 , 4) C. ( -1, 4 ) D. ( 1, 4 ) E. ( 5 , 4 ) Jawab: BAB XI Lingkaran Masukkan nilai y=4 pada persamaan (x + 6)2 + (4 + 1)2 = 25 (x + 6)2 = 25 – 25 = 0 x = -6 Didapat titik x = -6 dan y = 4  (-6,4) Jawabannya A 2. Jika 2x3 – 5x2 – kx + 18 dibagi x - 1 mempunyai sisa 5, maka nilai k adalah... A. -15 B. -10 C. 0 D. 5 E. 10 Jawab: BAB XII Suku Banyak Metoda Horner x3 x= 1 2 x2 x -k 18 2 2 -5 -3 -3 - k -3 ( -3- k) + = kalikan dengan x =1 (15 – k)  sisa =5 15 – k = 5 k = 15 – 5 = 10 Jawabannya E www.belajar-matematika.com 1 3. Luas daerah yang dibatasi oleh kurva y = x2, y = 1, dan x = 2 adalah... A. ∫ (1 − B. ∫ ( ) C. ∫ ( − 1) − 1) D. ∫ (1 − Jawab BAB XVI Integral E. ∫ ( ) − 1) Buat sketsa gambar untuk mengetahui batas luas: terlihat bahwa bidang luasnya (arsiran) bagian atasnya adalah y = x 2 dan bagian bawahnya y = 1 dengan dibatasi oleh batas atas x = 2 dan batas bawah x =1. Dalam notasi integralnya : b ∫ ( b b a a a L =  y2 dx -  y1 dx =  ( y 2  y1) dx − 1) Jawabannya C 4. ( ( A. B. ) ) = .... C. E. D. www.belajar-matematika.com 2 Jawab: BAB VII Trigonometri ( ( + 2 sin cos ) ) = = = =1 = 2 Jawabannya E 5. Lingkaran (x - 3)2 + (y - 4)2 = 25 memotong sumbu –x di titik A dan B. Jika P adalah titik pusat lingkaran tersebut, maka cos ∠APB = ... A. C. B. E. D. Jawab: BAB XI Lingkaran dan BAB VII Trigonometri Sketsa gambar: Lingkaran dengan pusat (3,4) APB merupakan segitiga. www.belajar-matematika.com 3 Untuk menjawab soal ini digunakan teorema di bawah ini: Aturan sinus dan cosinus C  b  a  A c B Aturan cosinus 1. a 2 = b 2 + c 2 - 2bc cos  2. b 2 = a 2 + c 2 - 2ac cos  3. c 2 = a 2 + b 2 - 2ab cos  Kita pakai rumus (3) c = AB = 6 a = b = AP = PB = √3 + 4 = √25 = 5 c 2 = a 2 + b 2 - 2ab cos P 2ab cos P = + − cos P = = = = . . . Jawabannya A 6. Grafik fungsi f(x) = ax3 – bx2 + cx + 12 naik jika.... A. b2 – 4ac < 0 dan a > 0 B. b2 – 4ac < 0 dan a < 0 C. b2 – 3ac > 0 dan a < 0 D. b2 – 3ac < 0 dan a > 0 E. b2 – 3ac < 0 dan a < 0 Jawab: BAB XV Differensial www.belajar-matematika.com 4 Syarat fungsi naik ( )>0 3ax2 - 2bx + c > 0  fungsi naik ( - , 0, + ) * variabel x2 > 0 3a > 0 a>0 *D<0 ( ) > 0 , maka tidak ada titik potong dan singgung di sb x sehingga D < 0  karena (-2b)2 – 4.3a.c < 0 4b2 – 12.a.c < 0 b2 – 3 ac < 0 didapat a > 0 dan b2 – 3 ac < 0 Jawabannya D 7. →0 = .... E. √3 √ A. -1 C. 1 B. -0 D. Jawab: XIV Limit Fungsi →0 = →0 = = = →0 →0 1 . 1. = = =1 Jawabannya C www.belajar-matematika.com

« previous  1234567