SEARCH

Found 68 related files. Current in page 2

rumus luas bangun datar beserta gambar

Kunci Jawaban dan Pembahasan MAT VIII A

Kunci Jawaban dan Pembahasan PR Matematika Kelas VIII 1 Bab I Faktorisasi Bentuk Aljabar 9. Jawaban: d 32p2qr 3 32p2qr3 : 96pq2r2 = 96pq2r2 32 = 96 × p(2 – 1)q(1 – 2)r(3 – 2) 1 = 3 pq–1r A. Pilihan Ganda 1. Jawaban: c 5p2 – 7p + 8 – p2 + 3p – 10 = 5p2 – p2 – 7p + 3p + 8 – 10 = 4p2 – 4p – 2 2. Jawaban: c 5(3x – 1) – 12x + 9 = 15x – 5 – 12x + 9 = (15 – 12)x – 5 + 9 = 3x + 4 3. Jawaban: d 8(3x + 6y) + 3(2x – 6y) = 24x + 48y + 6x – 18y = 30x + 30y 4. Jawaban: a (x2 – 4x + y) – (2x – 2y + x2) = x2 – 4x + y – 2x + 2y – x2 = (1 – 1)x2 + (–4 – 2)x + (1 + 2)y = –6x + 3y 5. Jawaban: b 5a2(2a3 + 11c) = 5a2(2a3) + 5a2(11c) = 10a5 + 55a2c 6. Jawaban: d (x + 2)(2x – 1) = x(2x – 1) + 2(2x – 1) = 2x2 – x + 4x – 2 = 2x2 + 3x – 2 7. Jawaban: a (2x – 3)(–3x + 5) = 2x(–3x + 5) – 3(–3x + 5) = –6x2 + 10x + 9x – 15 = –6x2 + 19x – 15 8. Jawaban: c (3y – 4)(4x2 + 6xy + y2) = 3y(4x2 + 6xy + y2) – 4(4x2 + 6xy + y2) = 12x2y + 18xy2 + 3y3 – 16x2 – 24xy – 4y2 2 Kunci Jawaban dan Pembahasan PR Matematika Kelas VIII pr = 3q 10. Jawaban: c 3x 2 : 6x 2 4 3 3 = 2 x : 2 x2 = 3 x 2 3 2 x 2 = 1 x x2 = x 11. Jawaban: c –(8p3qr2)3 = –83(p3)3q3(r2)3 = –512p9q3r6 12. Jawaban: c (3x – 4y)2 = (3x – 4y)(3x – 4y) = 3x(3x – 4y) – 4y(3x – 4y) = 9x2 – 12xy – 12xy + 16y2 = 9x2 – 24xy + 16y2 13. Jawaban: a (6x + 5)2 + (–7x – 4)2 = (36x2 + 60x + 25) + (49x2 + 56x + 16) = 36x2 + 49x2 + 60x + 56x + 25 + 16 = 85x2 + 116x + 41 14. Jawaban: b (a + b)3 = a3 + 3a2b + 3ab2 + b3 (x – 4)3 = (x + (–4))3 = x3 + 3x2(–4) + 3x(–4)2 + (–4)3 = x3 – 12x2 + 48x – 64 15. Jawaban: d 4r 2 (r − 3) 4r2(r – 3) : r(r – 3)2 = r(r − 3)2 4r = r−3 16. Jawaban: b 24x6q7 : (4q2x3 × 3qx) = 24x6q7 4q2x 3 × 3qx 24 x6 = q7 = 12 × 4 × q3 x = 2x2q4 24x 6q7 12q3 x 4 17. Jawaban: b 28p5q7r4 b. : 6q2r3p4) = 28p5q7r4 = × (3q2pr3 14p2q7r4 × 18. Jawaban: d Keliling = 2((2x + 2) + (2x – 1)) = 2(4x + 1) = (8x + 2) cm 19. Jawaban: b s = (2x – 3) cm L = s2 = (2x – 3)2 = (2x)2 + 2(2x)(–3) + (–3)2 = (4x2 – 12x + 9) cm2 20. Jawaban: c = (x – 2) m p = (x – 2) + 6 m = (x + 4) m Luas = p × = (x + 4)(x – 2) = (x2 + 2x – 8) m2 B. Uraian 1. a. 6a + 3a – 9a + 7b = (6 + 3 – 9)a + 7b = 7b b. 10x2 – 3xy – 5y2 – 18x2 + 5xy + y2 = (10 – 18)x2 + (5 – 3)xy + (1 – 5)y2 = –8x2 + 2xy – 4y2 c. d. 2. a. b. c. d. 3. a. 4 + 3p + 5(p – 2) = 4 + 3p + 5p – 10 = 8p – 6 (4p – 11q – 9r) – (9p + 8q – 8r) = 4p – 9p – 11q – 8q – 9r + 8r = (4 – 9)p – (11 + 8)q – (9 – 8)r = –5p – 19q – r c. (17y2 + 11y + 18) – (15y2 + 2y – 24) = 17y2 – 15y2 + 11y – 2y + 18 + 24 = (17 – 15)y2 + (11 – 2)y + 18 + 24 = 2y2 + 9y + 42 d. 15(4y2 + 6y + 3) + 11(2y2 – 4y – 5) = 60y2 + 90y + 45 + 22y2 – 44y – 55 = 60y2 + 22y2 + 90y – 44y + 45 – 55 = (60 + 22)y2 + (90 – 44)y + 45 – 55 = 82y2 + 46y – 10 1 2p3 4. a. b. (2x – 6)(5x – 2) = 2x(5x – 2) – 6(5x – 2) = 10x2 – 4x – 30x + 12 = 10x2 – 34x + 12 c. (3x – 4y)(12x2 – 16xy + 9y2) = 3x(12x2 – 16xy + 9y2) – 4y(12x2 – 16xy + 9y2) = 36x3 – 48x2y + 27xy2 – 48x2y + 64xy2 – 36y3 = 36x3 – (48 + 48)x2y + (27 + 64)xy2 – 36y3 = 36x3 – 96x2y + 91xy2 – 36y3 d. 8p4qr2 : 2pq2r2 2(a – 3b) + 3(2a + 7b) = 2a – 6b + 6a + 21b = 2a + 6a – 6b + 21b = 8a + 15b (3r – 9s) + (7r + 16s) = 3r – 9s + 7r + 16s = 3r + 7r + 16s – 9s = 10r + 7s (3a + 9 – 6b) + (11b + 7a – 5) = 3a + 9 – 6b + 11b + 7a – 5 = 3a + 7a – 6b + 11b + 9 – 5 = 10a + 5b + 4 (–x2 + 6xy + 3y2) + (3x2 – 4xy – 7y2) = –x2 + 6xy + 3y2 + 3x2 – 4xy – 7y2 = –x2 + 3x2 + 6xy – 4xy + 3y2 – 7y2 = 2x2 + 2xy – 4y2 6(2y2 – 3x + 6) + 7(3y2 – 2x + 6) = 12y2 – 18x + 36 + 21y2 – 14x + 42 = 12y2 + 21y2 – 18x – 14x + 36 + 42 = 33y2 – 32x + 78 (10a + 9b – 12) – (9a + 8b – 2) = 10a – 9a + 9b – 8b – 12 + 2 = (10 – 9)a + (9 – 8)b – 12 + 2 = a + b – 10 –5a2(2a2 + 8a2b – 5ab2) = (–5 × 2)a4 – (5 × 8)a4b + (–5 × (–5))a3b2 = –10a4 – 40a4b + 25a3b2 8p4 qr 2 = 2pq2r 2 8 = 2 × p4 p × 1 q q2 = 4 × p3 × q × 1 5. a. b. c. d. r2 r2 4p3 = q × (4p2q)3 = 43p6q3 = 64p6q3 (5a + 3b)2 = (5a)2 + 2(5a)(3b) + (3b)2 = 25a2 + 30ab + 9b2 2 2 (7a – 4a) = (7a2)2 – 2(7a2)(4a) + (4a)2 = 49a4 – 56a3 + 16a2 (2q + 3p – 7)2 = (2q + 3p – 7)(2q + 3p – 7) = 2q(2q + 3p – 7) + 3p(2q + 3p – 7) – 7(2q + 3p – 7) = 4q2 + 6pq – 14q + 6pq + 9p2 – 21p – 14q – 21p + 49 = 4q2 + 12pq – 28q – 42p + 9p2 + 49 (3a + 4)4 = 1(3a)4 + 4(3a)3(4) + 6(3a)2(4)2 + 4(3a)(4)3 + 1(4)4 Suku ke-3: 6(3a)2(4)2 = 6 × 9a2 × 16 = 864a2 Jadi, koefisien suku ke-3 yaitu 864.

KUNCI JAWABAN TUKPD DKI TAHAP 2 MATA PELAJARAN : IPA ...

KUNCI JAWABAN TUKPD DKI TAHAP 2 MATA PELAJARAN : IPA TAHUN PELAJARAN : 2012-2013 Pilihlah jawaban yang benar! 1. Dua orang atlet mulai berlari dengan waktu bersamaan, dan saat mencapai garis finish dicatat dengan hasil seperti gambar. Selisih waktu antara Atlet 1 dengan Atlet 2 adalah .... A. 45s B. 28s C. 17s D. 11s Pembahasan : Waktu tempuh Atlet 1 adalah 17sekon dan Atlet 2 adalah 28sekon. Selisih waktu kedua Atlet = 28s – 22s = 6s Kunci : # (Anulir) 2. 4. 5. Pembahasan : 3. Termometer dinding yang menggunakan skala suhu Celsius menunjukkan suhu ruang kelas 300C. Suhu ruang tersebut sama dengan .... A. 560F B. 540F C. 620F D. 860F Pembahasan: Persamaan antara skala Celsius ke skala Fahrenheit adalah : 9 9 t oC  t  32 o F  30  32 5 5  54  32  86o F Kunci : D Grafik berikut melukiskan pemanasan 3kg air. Jika kalor jenis air 4200J/kg0C, kalor yang diperlukan pada proses R ke S adalah .... A. 12600J B. 126000J C. 252000J D. 378000J Pembahasan: Massa (m) = 3kg, C= 4200J/kg0C dan perubahan suhu (t) = 30 – 10 = 20oC Kalor yang diperlukan : Q = m.C. t = 3kg . 4200J/kg0C . 20oC Q = 126000J Kunci : C

Kelas III_SD_IPA_Sularmi.pdf
by cicak 0 Comments favorite 31 Viewed Download 0 Times

Puji syukur kami panjatkan ke hadirat Allah SWT, berkat rahmat dan karunia-Nya, Pemerintah, dalam hal ini, Departemen Pendidikan Nasional, pada tahun 2008, telah membeli hak cipta buku teks pelajaran ini dari penulis/penerbit untuk disebarluaskan kepada masyarakat melalui situs internet (website) Jaringan Pendidikan Nasional. Buku teks pelajaran ini telah dinilai oleh Badan Standar Nasional Pendidikan dan telah ditetapkan sebagai buku teks pelajaran yang memenuhi syarat kelayakan untuk digunakan dalam proses pembelajaran melalui Peraturan Menteri Pendidikan Nasional Nomor 34 Tahun 2008. Kami menyampaikan penghargaan yang setinggi-tingginya kepada para penulis/penerbit yang telah berkenan mengalihkan hak cipta karyanya kepada Departemen Pendidikan Nasional untuk digunakan secara luas oleh para siswa dan guru di seluruh Indonesia. Buku-buku teks pelajaran yang telah dialihkan hak ciptanya kepada Departemen Pendidikan Nasional ini, dapat diunduh (down load), digandakan, dicetak, dialihmediakan, atau difotokopi oleh masyarakat. Namun, untuk penggandaan yang bersifat komersial harga penjualannya harus memenuhi ketentuan yang ditetapkan oleh Pemerintah. Diharapkan bahwa buku teks pelajaran ini akan lebih mudah diakses sehingga siswa dan guru di seluruh Indonesia maupun sekolah Indonesia yang berada di luar negeri dapat memanfaatkan sumber belajar ini. Kami berharap, semua pihak dapat mendukung kebijakan ini. Kepada para siswa kami ucapkan selamat belajar dan manfaatkanlah buku ini sebaik-baiknya. Kami menyadari bahwa buku ini masih perlu ditingkatkan mutunya. Oleh karena itu, saran dan kritik sangat kami harapkan.

SNMPTN 2012 Matematika - zenius.net

SNMPTN 2012 Matematika Doc. Name: SNMPTN2012MATDAS999 Version : 2013-04 halaman 1 01. Jika a dan b adalah bilangan bulat positif yang memenuhi ab = 220 - 219, maka nilai a+b adalah …. (A) 3 (B) 7 (C) 19 (D) 21 (E) 23 02. Jika 4log3 = k , maka 2log27 adalah … (A) k 6 (B) (C) (D) (E) k 6k 6 k6 k 03. Jika p+1 dan p-1 adalah akar-akar persamaan x2 - 4x + a = 0, maka nilai a adalah …. (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 04. Jika f adalah fungsi kuadrat yang grafiknya melalui titik (1,0), (4,0), dan (0,-4), maka nilai f(7) adalah …. (A) -16 (B) -17 (C) -18 (D) -19 (E) -20 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 2 05. Semua nilai x yang memenuhi (x + 3)(x - 1) ≥ (x - 1) adalah (A) 1 ≤ x ≤ 3 (B) x ≤ -2 atau x ≥ 1 (C) -3 ≤ x ≤ -1 (D) -2 ≥ x atau x ≥ 3 (E) -1 ≥ x atau x ≥ 3 06. Jika 2x - z = 2, x + 2y = 4, dan y + z = 1, maka nilai 3x + 4y + z adalah …. (A) 4 (B) 5 (C) 6 (D) 7 (E) 8 07. Jika diagram batang di bawah ini memperlihatkan frekuensi kumulatif hasil tes matematika siswa kelas XII, maka persentase siswa yang memperoleh nilai 8 adalah…. (A) (B) (C) (D) (E) 12 % 15 % 20 % 22 % 80 % Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 3 08. Ani telah mengikuti tes matematika sebanyak n kali. Pada tes berikutnya ai memperoleh nilai 83 sehingga nilai rata-rata Ani aalah 80, tetapi jika nilai tes tersebut adalah 67, maka rata-ratanya adalah 76. Nilai n adalah …. (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 09. Nilai maksimum fungsi objektif (tujuan) f(x,y) = 3x + 2y dengan kendala x + 2y ≤ 12, x ≥ 2, dan y ≥ 1 adalah …. (A) 16 (B) 18 (C) 32 (D) 36 (E) 38 10. Jika dan , maka determinan matriks AB - C adalah …. (A) -5 (B) -4 (C) 5 (D) 6 (E) 7 11. Agar tiga bilangan a + 2, a - 3, a - 4 merupakan barisan aritmatika, maka suku ke dua harus ditambah dengan …. (A) -3 (B) -2 (C) -1 (D) 1 (E) 2 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 4 12. Jika suku pertama barisan aritmatika adalah -2 dengan beda 3, Sn adalah jumlah n suku pertama deret aritmatika tersebut, dan Sn+2 - Sn = 65, maka nilai n adalah …. (A) 11 (B) 12 (C) 13 (D) 14 (E) 15 13. Jika suatu persegi dengan sisi satu satuan dibagi menjadi 5 persegi panjang dengan luas yang sama seperti ditunjukkan pada gambar di bawah ini, maka panjang ruas garis AB adalah … (A) 3 5 (B) 2 3 (C) 2 5 (D) (E) 1 5 1 5 14. Di suatu kandang tedapat 40 ekor ayam, 15 ekor diantaranya jantan. Di antara ayam jantan tersebut, 7 ekor berwarna putih. Jika banyak ayam berwarna putih adalah 22 ekor, maka banyak ayam betina yang tidak berwarna putih adalah … (A) 5 (B) 7 (C) 8 (D) 10 (E) 15 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 5 15. Jika f(x) = ax + 3, a ≠ 0 dan f-1 (f-1(9)) = 3, maka nilai a2 + a + 1 adalah … (A) 11 (B) 9 (C) 7 (D) 5 (E) 3 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 ...

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 1. Lingkaran (x + 6)2 + (y + 1)2 = 25 menyinggung garis y = 4 di titik... A. ( -6, 4 ) B. ( 6 , 4) C. ( -1, 4 ) D. ( 1, 4 ) E. ( 5 , 4 ) Jawab: BAB XI Lingkaran Masukkan nilai y=4 pada persamaan (x + 6)2 + (4 + 1)2 = 25 (x + 6)2 = 25 – 25 = 0 x = -6 Didapat titik x = -6 dan y = 4  (-6,4) Jawabannya A 2. Jika 2x3 – 5x2 – kx + 18 dibagi x - 1 mempunyai sisa 5, maka nilai k adalah... A. -15 B. -10 C. 0 D. 5 E. 10 Jawab: BAB XII Suku Banyak Metoda Horner x3 x= 1 2 x2 x -k 18 2 2 -5 -3 -3 - k -3 ( -3- k) + = kalikan dengan x =1 (15 – k)  sisa =5 15 – k = 5 k = 15 – 5 = 10 Jawabannya E www.belajar-matematika.com 1 3. Luas daerah yang dibatasi oleh kurva y = x2, y = 1, dan x = 2 adalah... A. ∫ (1 − B. ∫ ( ) C. ∫ ( − 1) − 1) D. ∫ (1 − Jawab BAB XVI Integral E. ∫ ( ) − 1) Buat sketsa gambar untuk mengetahui batas luas: terlihat bahwa bidang luasnya (arsiran) bagian atasnya adalah y = x 2 dan bagian bawahnya y = 1 dengan dibatasi oleh batas atas x = 2 dan batas bawah x =1. Dalam notasi integralnya : b ∫ ( b b a a a L =  y2 dx -  y1 dx =  ( y 2  y1) dx − 1) Jawabannya C 4. ( ( A. B. ) ) = .... C. E. D. www.belajar-matematika.com 2 Jawab: BAB VII Trigonometri ( ( + 2 sin cos ) ) = = = =1 = 2 Jawabannya E 5. Lingkaran (x - 3)2 + (y - 4)2 = 25 memotong sumbu –x di titik A dan B. Jika P adalah titik pusat lingkaran tersebut, maka cos ∠APB = ... A. C. B. E. D. Jawab: BAB XI Lingkaran dan BAB VII Trigonometri Sketsa gambar: Lingkaran dengan pusat (3,4) APB merupakan segitiga. www.belajar-matematika.com 3 Untuk menjawab soal ini digunakan teorema di bawah ini: Aturan sinus dan cosinus C  b  a  A c B Aturan cosinus 1. a 2 = b 2 + c 2 - 2bc cos  2. b 2 = a 2 + c 2 - 2ac cos  3. c 2 = a 2 + b 2 - 2ab cos  Kita pakai rumus (3) c = AB = 6 a = b = AP = PB = √3 + 4 = √25 = 5 c 2 = a 2 + b 2 - 2ab cos P 2ab cos P = + − cos P = = = = . . . Jawabannya A 6. Grafik fungsi f(x) = ax3 – bx2 + cx + 12 naik jika.... A. b2 – 4ac < 0 dan a > 0 B. b2 – 4ac < 0 dan a < 0 C. b2 – 3ac > 0 dan a < 0 D. b2 – 3ac < 0 dan a > 0 E. b2 – 3ac < 0 dan a < 0 Jawab: BAB XV Differensial www.belajar-matematika.com 4 Syarat fungsi naik ( )>0 3ax2 - 2bx + c > 0  fungsi naik ( - , 0, + ) * variabel x2 > 0 3a > 0 a>0 *D<0 ( ) > 0 , maka tidak ada titik potong dan singgung di sb x sehingga D < 0  karena (-2b)2 – 4.3a.c < 0 4b2 – 12.a.c < 0 b2 – 3 ac < 0 didapat a > 0 dan b2 – 3 ac < 0 Jawabannya D 7. →0 = .... E. √3 √ A. -1 C. 1 B. -0 D. Jawab: XIV Limit Fungsi →0 = →0 = = = →0 →0 1 . 1. = = =1 Jawabannya C www.belajar-matematika.com

Soal dan Pembahasan Matematika IPA SNMPTN 2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011 1. Diketahui vektor u = (a, -2, -1) dan v = (a, a, -1). Jika vektor u tegak lurus pada v , maka nilai a adalah ... A. -1 B. 0 C. 1 D. 2 E. 3 Jawab: Vektor: vektor u tegak lurus pada v maka u . v = 0 u = −2 , v = −1 −2 . −1 −1 (a – 1) (a-1) = 0 maka a = 1 −1 = a2 – 2a + 1 = 0 (a - 1)2 = 0 Jawabannya adalah C 2. Pernyataan berikut yang benar adalah ... A. Jika sin x = sin y maka x = y B. Untuk setiap vektor u , v dan w berlaku u . ( v . w ) = ( u . v ). w C. Jika b  f ( x) dx = 0, maka a D. Ada fungsi f sehingga E. 1 – cos 2x = 2 cos2 x f ( x )= 0 Lim f(x) ≠ f(c) untuk suatu c xc www.belajar-matematika.com - 1 Jawab: Trigonometri, vektor, integral, limit A. Ambil nilai dimana sin x = sin y  sin α = sin (1800 – α ) ambil nilai α = 600  sin 600 = sin 1200 ; tetapi 600 ≠ 1200 Pernyataan SALAH B. Operasi u . ( v . w ) tak terdefinisi karena v . w = skalar, sedangkan u = vektor vektor . skalar = tak terdefinisi Pernyataan SALAH C. Ambil contoh cari cepat hasil dimana b  f ( x) dx = 0 ; a 1 Didapat b = 1 dan a = -1 maka f(x)= x   x dx = 0  1 terbukti : f(x) = x bukan f(x) = 0 x2 | Pernyataan SALAH D. Ambil contoh f(x) = Lim xc f(x) = Lim x 1 ( ( = ( ( ) ( )( ) = ) ( ) Lim f(x) ≠ f(c)  2 ≠ 1 xc ) ( )( ) = ) ( ) =2 Pernyataan BENAR E. 1 – cos 2x = 1 – ( 2cos2 x – 1) = 1 + 1 - 2cos2 x = 2 - 2cos2 x = 2 ( 1 – cos2 x) Pernyataan SALAH Jawabannya adalah D www.belajar-matematika.com - 2 = (1 – 1) = 0 3. Luas daerah di bawah y = -x2 +8x dan di atas y = 6x - 24 dan terletak di kuadran I adalah.... a. ∫ (− b. ∫ (− c. ∫ (− +8 ) +8 ) +8 ) d. ∫ (6 − 24) e. ∫ (6 − 24) Jawab: Integral: +∫ ( + ∫ (− + ∫ (− + ∫ (− + ∫ (− − 2 − 24) + 2 + 24) + 2 + 24) +8 ) +8 ) kuadran I titik potong kedua persamaan : y1 = y2 -x2 +8x = 6x-24 -x2 +8x - 6x+24 = 0 -x2 +2x + 24 = 0 x2 -2x - 24 = 0 (x - 6) (x+4)0 x = 6 atau x = -4  karena di kuadran I maka yang berlaku adalah x = 6  y = 6.6 – 24= 12 berada di titik (6,12) www.belajar-matematika.com - 3 L = ∫ (− = ∫ (− +8 ) +8 ) + ∫ ((− + ∫ (− Jawabannya adalah B + 8 ) − (6 − 24)) + 2 + 24) 4. sin 350 cos 400 - cos 35 sin 400 = A. cos 50 B. sin 50 C. cos 950 D. cos 750 E. sin 750 Jawab: Trigonometri: Pakai rumus: sin (A - B) = sin A cos B - cos A Sin B A= 350 ; B = 400 = sin (350 - 400) = sin -50 Cos (90 0 -  ) = sin   rumus Cos (90 0 - (-50) ) = sin -50   = -50 Cos 950 = sin -50 Jawabannya adalah C 5. Diketahui g(x) = ax2 – bx + a – b habis dibagi x – 1. Jika f(x) adalah suku banyak yang bersisa a ketika dibagi x – 1 dan bersisa 3ax + b2 + 1 ketika dibagi g(x), maka nilai a adalah...... A. -1 B. -2 C. 1 D. 2 Jawab: Suku Banyak: g(x) = ax2 – bx + a – b habis dibagi x – 1  g(1) = 0 g(1) = a . 1 – b .1 + a – b = 0 =a–b+a–b=0 2a – 2b = 0 2a = 2b  a = b karena a = b maka: g(x) = ax2 – ax + a – a = ax2 – ax www.belajar-matematika.com - 4 E. 3 f(x) dibagi dengan f(x-1) sisa a  f(1) = a f(x) dibagi dengan g(x) sisa 3ax + b2 + 1 f(x) dibagi dengan ax2 – ax sisa 3ax + b2 + 1 f(x) dibagi dengan ax(x – 1) sisa 3ax + b2 + 1 teorema suku banyak: Jika suatu banyak f(x) dibagi oleh (x- k) akan diperoleh hasil bagi H(x) dan sisa pembagian S  f(x) = (x- k) H(x) + S f(x) dibagi dengan ax(x – 1) sisa 3ax + b2 + 1 f(x) = ax (x - 1) H(x) + (3ax + b2 + 1) substitusikan nilai nol dari pembagi yaitu x = 0 dan x = 1  dari ax (x - 1) ambil x = 1  untuk x = 1 f(1) = a . 1 (1 – 1) H(0) + 3a.1 + b2 + 1 a = 0 + 3a + b2 + 1  diketahu a = b, masukkan nilai a = b a = 3a + a2 + 1 a2 + 2a + 1 = 0 (a+1)(a+1) = (a+1)2 = 0 a = -1 Jawabannya adalah A 6. Rotasi sebesar 450 terhadap titik asal diikuti dengan pencerminan terhadap y = -x memetakan titik (3,4) ke .... A. √ B. − Jawab: ,√ √ ,√ C. D. √ √ ,−√ ,−√ E. − Transformasi Geometri:  cos  Rotasi sebesar 450 terhadap titik asal =   sin    sin    cos     0  1 pencerminan terhadap y = -x    1 0     www.belajar-matematika.com - 5 √ ,√

ANALISIS SOAL SNMPTN BIOLOGI ... - repository@UPI

ANALISIS SOAL SNMPTN BIOLOGI BERDASARKAN DOMAIN KOGNITIF TAKSONOMI BLOOM REVISI DAN PROFIL CAPAIAN SISWA SMA KELAS XII SKRIPSI Dajukan untuk Memenuhi Sebagian dari Syarat Memperoleh Gelar Sarjana Pendidikan Program Studi Pendidikan Biologi Oleh: Dian Amirulloh 0900457 JURUSAN PENDIDIKAN BIOLOGI FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA 2013 Dian Amirulloh, 2013 Analisis Soal SNMPTN Biologi Berdasarkan Domain Kognitif Taksonomi Bloom Revisi Dan Profil Capaian Siswa SMA Kelas XII Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu ANALISIS SOAL SNMPTN BIOLOGI BERDASARKAN DOMAIN KOGNITIF TAKSONOMI BLOOM REVISI DAN PROFIL CAPAIAN SISWA SMA KELAS XII Oleh Dian Amirulloh Sebuah skripsi yang diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana pada Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam © Dian Amirulloh 2013 Universitas Pendidikan Indonesia Agustus 2013 Hak Cipta dilindungi undang-undang. Skripsi ini tidak boleh diperbanyak seluruhya atau sebagian, Dian Amirulloh, 2013 Analisis Soal SNMPTN Biologi Berdasarkan Domain Kognitif Taksonomi Bloom Revisi Dan Profil Capaian Siswa SMA Kelas XII Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu dengan dicetak ulang, difoto kopi, atau cara lainnya tanpa ijin dari penulis. LEMBAR PENGESAHAN ANALISIS SOAL SNMPTN BIOLOGI BERDASARKAN DOMAIN KOGNITIF TAKSONOMI BLOOM REVISI DAN PROFIL CAPAIAN SISWA SMA KELAS XII Oleh: Dian Amirulloh 0900457 Disetujui dan disahkan oleh: Pembimbing I Prof. Dr. Nuryani Rustaman, M.Pd. NIP. 195012311979032029 Pembimbing II Dr. Siti Sriyati, M.Si. NIP. 197105302001122001 Mengetahui Ketua Jurusan Pendidikan Biologi Dr. Riandi, M.Si. Dian Amirulloh, 2013 Analisis Soal SNMPTN Biologi Berdasarkan Domain Kognitif Taksonomi Bloom Revisi Dan Profil Capaian Siswa SMA Kelas XII Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu NIP.196305011988031002 “Sumpahku” Terlentang! Jatuh! Perih! Kesal! Ibu pertiwi Engkau pegangan Dalam perjalanan Janji pusaka dan sakti Tanah tumpah darahku makmur dan suci ………… Hancur badan! Tetap berjalan! Jiwa besar dan suci Membawa aku PADAMU! (Bacharuddin Jusuf Habibie) “Skripsi ini dipersembahkan untuk orang-orang yang saya sayangi, khususnya ibunda & ayahanda yang dengan tulus ikhlas telah memberikan do’a dan dukungan kepada penulis selama melaksanakan studi di perguruan tinggi, serta untuk bangsa & negara Indonesia yang saya cintai. Semoga karya ini dapat membuahkan kebaikan dan memberikan manfaat.” - Mari Kita Buat Indonesia Tersenyum - Dian Amirulloh, 2013 Analisis Soal SNMPTN Biologi Berdasarkan Domain Kognitif Taksonomi Bloom Revisi Dan Profil Capaian Siswa SMA Kelas XII Universitas Pendidikan Indonesia | repository.upi.edu | perpustakaan.upi.edu PERNYATAAN Dengan ini saya menyatakan bahwa skripsi dengan judul Analisis Soal SNMPTN Biologi Berdasarkan Doamin Kognitif Taksonomi Bloom Revisi dan Profil Capaian Siswa SMA Kelas XII ini beserta seluruh isinya adalah benar-benar karya saya sendiri, dan saya tidak melakukan penjiplakan atau pengutipan dengan cara-cara yang tidak sesuai dengan etika keilmuan. Atas pernyataan ini, saya siap menanggung resiko/sanksi yang dijatuhkan kepada saya apabila kemudian ditemukan adanya pelanggran terhadap etika keilmuan dalam karya saya ini, atau ada klaim dari pihak lain terhadap keaslian karya saya ini.

Outline laporan antara - Direktorat Jenderal Penataan Ruang

Tujuan utama dari pekerjaan ini adalah melakukan penyusunan alternatif kebijakan dan penerapan langkah-langkah kegiatan yang tepat secara operasional pada wilayah yang berada pada daerah yang rawan dan sering terlanda bencana alam. Sasaran dari Penyusunan Operasionalisasi Program Penanganan Bencana Alam Bidang Penataan Ruang ini ialah memberikan arah yang jelas bentuk-bentuk penanganan yang baku untuk semua wilayah yang berada pada daerah yang rawan dan sering terlanda bencana alam, mulai dari identifikasi RTRW, indikasi evakuasi yang sesuai dengan Rencana Tata Ruang Wilayah (RTRW), serta pemulihan dan pembinaan lingkungan dalam rencana tata ruang yang akan datang. Kegiatan ini juga diharapkan sebagai bahan dan petunjuk dengan kondisi geografis, tingkat kerawanan dan tingkat bahaya yang ditimbulkan bila terjadi bencana alam, ditunjang dari aspek keruangan. Salah satu langkah awal yang perlu dikaji dalam melaksanakan pekerjaan “Penyusunan Program Penangan Bencana Alam Bidang Penataan Ruang” adalah : 1. Penetapan Kriteria atau batasan Peristiwa Bencana Alam 2. Gambaran Umum Mekanisma Peristiwa Bencana Alam yang terjadi Di Indonesia Kedua hal tersebut selanjutnya menjadi masukan dalam penyusunan Identifikas Zonasi Daerah Bencana Di Indonesia. Identifikasi Zonasi Daerah Bencana Di Indonesia tersebut selanjutnya menjadi salah satu masukan penting dalam menyusun Standar Operasional Prosedur dan Program Penanganan Bencana alam Bidang Penataan Ruang, yang dapat mewakili berbagai peristiwa bencana alam yang terjadi di Indonesia. Operasionalisasi Program Penanganan Bencana Alam Bidang Penataan Ruang Berdasarkan penyebabnya bencana dapat dibedakan menjadi tiga jenis, yaitu bencana alam, bencana akibat ulah manusia, dan bencana kombinasi (Lihat Gambar 2.1). a) Bencana Alam (natural disaster) Bencana Alam merupakan fenomena atau gejala alam yang disebabkan oleh keadaan geologi, biologis, seismis, hidrologis atau disebabkan oleh suatu proses dalam lingkungan alam mengancam kehidupan, struktur dan perekonomian masyarakat serta menimbulkan malapetaka. Bencana yang termasuk bencana alam antara lain: wabah penyakit, hama dan penyakit tanaman, gempa bumi, letusan gunung berapi, tanah longsor, gelombang laut pasang, banjir, erosi, angin taufan, badai tropis, kekeringan dan kebakaran hutan.

QUICK GUIDE Data dan Informasi Bencana ... - WordPress.com

Bencana merupakan bagian dari kehidupan manusia yang datang tanpa diduga kapan, dimana dan bagaimana terjadinya. Hal ini menyebabkan ketidaksiapan masyarakata dalam menghadapi dan akhirnya menimbulkan korban dan kerusakan. Fenomena bencana sebagian besar merupakan kejadian berulang pada tempat yang sama, sehingga dapat dilakukan analisa untuk ke depan dengan menggunakan data historis bencana-bencana sebelumnya. Melalui Data dan Informasi Bencana Indonesi (DIBI) dapat dilihat historis kejadian bencana yang terjadi di Indonesia mulai tahun 18152012. Dalam DIBI dapat disajikan data bencana mulai tanggal kejadian, lokasi, korban dan kerusakan yang ditimbulkan. Analisa yang dapat disajikan melalui DIBI ini adalah grafik, statistik, peta tematik dan crosstab. . PERMINTAAN Berfungsi untuk membuat permintaan data kejadian bencana yang akan ditampilkan. Isikan rentang tanggal (YYYY MM DD), dari kapan sampai kapan. Rentang tanggal juga bisa diisikan hanya pada tahun saja. Apabila ingin melihat semua data maka rentang tanggal tidak usah diisi, langsung klik pada “OK”. . LIHAT DATA Berfungsi untuk melihat data kejadian bencana yang diminta. Fungsi ini sama dengan “LIHAT DATA” pada permintaan. Semua data bencana yang diminta akan ditampilakn secara rinci dan berdasarkan database yang tersimpan. GRAFIK Berfungsi untuk menampilkan grafik data kejadian bencana. Grafik dapat berupa grafik batang dan diagram pie (kue). Klik pada “BUAT GRAFIK” maka akan ditanpilkan grafik variabel bencana berdasarkan tahun kejadian. STATISTIK Berfungsi untuk menampilkan data statistikkejadian bencana seperti jumlah, rata-rata, maksimum, varian,dan deviasi standar. Mulai dari lokasi, dampak bencana, korban dan kerusakan. Klik “LANJUT” maka akan ditampilkan data kejadian bencana sesuai dengan permintaan. Data hasil tampilan dapat disimpan dalam bentuk EXCEL maupun CSV. Cara menyimpanya klik pada pojok kanan tulisan “BUAT EXCEL CSV”. Data secara otomatis akan tersimpan dan dapat digunakan sewaktu-waktu. LAPORAN Berfungsi untuk menyajikan laporan bencana sesuai dengan pernintaan. Data yang tersedia hampir sama dengan di menu statistic. Klik “LANJUT” untuk mendapatkan laporan yang diminta. Hasil dari laporan ini dapat disimpan dalam bentuk EXCEl, CSV dan XML. PETA TEMATIK Berfungsi untuk menampilkan peta tematik berdasarkan variable yang diinginkan. Klik pada “BUAT PETA” maka akan menampilkan sebaran kejadian bencana di Indonesia secara langsung. Peta ini dapat didownlaod dengan cara klik kanan pada peta dan simpan sebagai gambar. CROSSTAB Berfungsi untuk mengetahui hubungan antara 2 variabel. Pilih variable pada kolom tersedia kemudian klik “TAMBAH’. Selanjutnya klik “LANJUT” untuk mendapatkan hasil crosstab sesuai yang diinginkan. Tabel ini dapat dianalisa lebih lanjut dengan menggunakan analisa statistikkhusus untuk tabulasi silang (crosstab). Hasil ini dapat disimpan dalam EXCEl dengan menekan tombol “BUAT EXCEL” di pojok kanan atas.

LAPORAN TAHUNAN 2012.pdf - data online skpd pemerintah ...

Puji Syukur kami panjatkan Kehadirat Tuhan Yang Maha Kuasa karena atas kasih dan rahmat-Nya sehingga kami dapat menyelesaikan Laporan Tahunan 2012 Badan Penanggulangan Bencana Daerah Kota Jayapura. Badan Penanggulangan Bencana Daerah Kota Jayapura merupakan salah satu Satuan Kerja Perangkat Daerah di Kota Jayapura yang berkewajiban menyusun Laporan Tahunan 2012 untuk memberikan gambaran sejauh mana pelaksanaan Kegiatan yang telah dicapai dan sebagai bahan informasi bagi pimpinan berkenaan dengan pelaksanaan kegiatan yang telah dilaksanakan. Dengan tersusunnya Laporan Tahunan 2012 Badan Penanggulangan Bencana Daerah Kota Jayapura, maka diharapkan bisa menjadi acuan untuk Pembangunan Kota Jayapura. Demikian Laporan Tahunan 2012 Badan Penanggulangan Bencana Daerah Kota Jayapura dibuat dan atas perhatiannya disampaikan terima kasih. Badan Penanggulangan Bencana Daerah Kota Jayapura dibentuk berdasarkan Peraturan Walikota No. 15 Tahun 2010 tentang Badan Penanggulangan Bencana Daerah Kota Jayapura dan dilanjutkan dengan Peraturan Daerah Kota Jayapura No. 12 Tahun 2011 tentang Organisasi dan Tata Kerja Badan Penanggulangan Bencana Daerah Kota Jayapura. Urusan Penanggulangan Bencana merupakan Urusan Wajib yang harus dilaksanakan oleh Pemerintah Provinsi maupun Kabupaten/Kota. Sebagai badan baru dilingkungan Penanggulangan Bencana Daerah (BPBD) Pemerintah Kota Jayapura, Badan Kota Jayapura akan terus melakukan pembenahan-pembenahan kedalam agar dapat melaksakan tugas-tugasnya dengan baik. Keadaan Alam seperti gempa bumi, banjir, tanah longsor dan lain sebagainya mengisyaratkan kepada pemerintah untuk bersikap tanggap dan antipatif dalam menyingkapi berbagai kemungkinan buruk apabila fenomena alam tersebut terjadi di Kota Jayapura . Langka selanjutnya kedepan Badan Penanggulang Bencana Daerah (BPBD) Kota Jayapura akan selalu berkoordinasi dengan pihak-pihak terkait sehingga tindak lanjut dari adanya Badan Penanggulangan Bencana Daerah (BPBD ) ini dapat efektif. Adapun tugas Badan Penanggulangan Bencana Daerah tersebut diantaranya menetapkan pedoman dan pengarahan terhadap usaha penanggulangan bencana yang mencakup pencegahan bencana, penanggulangan darurat, rehabilitasi, serta rekonstruksi serta kebutuhan penyelenggaraan penanggulangan bencana berdasarkan per UndangUndangan serta menyusun, menetapkan dan menginformasikan peta rawan bencana alam dan lain-lain sebagainya. Untuk mewujudkan penyelenggaraan pemerintah secara luas, nyata dan bertanggungjawab maupun pelaksanaan pembangunan secara menyeluruh, maka Badan Penanggulangan Bencana Daerah Kota Jayapura dalam melaksanakan tugas pokok dan fungsinya telah berupaya secara kontinyu dan terus menerus dalam usaha Penanggulangan Badan Penanggulangan Bencana Daerah Kota Jayapura

 1234567