SEARCH

Found 4158 related files. Current in page 7

iat sensor location 2005 tahoe

MQ-2 Datasheet - Seeed Studio
by jokomodo 0 Comments favorite 4 Viewed Download 0 Times

FEATURES Wide detecting scope Fast response and High sensitivity Stable and long life Simple drive circuit APPLICATION They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of LPG, i-butane, propane, methane ,alcohol, Hydrogen, smoke. SPECIFICATIONS A. Standard work condition Symbol Vc VH RL RH PH Parameter name Circuit voltage Heating voltage Load resistance Heater resistance Heating consumption Technical condition 5V±0.1 5V±0.1 can adjust 33Ω±5% less than 800mw Remarks AC OR DC ACOR DC Technical condition -20℃-50℃ -20℃-70℃ less than 95%Rh 21%(standard condition)Oxygen concentration can affect sensitivity Remarks Room Tem B. Environment condition Symbol Tao Tas RH O2 Parameter name Using Tem Storage Tem Related humidity Oxygen concentration minimum value is over 2% C. Sensitivity characteristic Symbol Rs Parameter name Sensing Resistance α (3000/1000) isobutane Standard Detecting Condition Preheat time Technical parameter 3KΩ-30KΩ (1000ppm iso-butane ) Concentration Slope rate ≤0.6 Temp: 20℃±2℃ Humidity: 65%±5% Vc:5V±0.1 Vh: 5V±0.1 Over 24 hour Remarks Detecting concentration scope: 200ppm-5000ppm LPG and propane 300ppm-5000ppm butane 5000ppm-20000ppm methane 300ppm-5000ppm H2 100ppm-2000ppm Alcohol D. Structure and configuration, basic measuring circuit 1 2 3 4 5 6 7 8 9 Parts Gas sensing layer Electrode Electrode line Heater coil Tubular ceramic Anti-explosion network Clamp ring Resin base Tube Pin Materials SnO2 Au Pt Ni-Cr alloy Al2O3 Stainless steel gauze (SUS316 100-mesh) Copper plating Ni Bakelite Copper plating Ni Fig.2 Fig. 1 Configuration A Configuration B A向 A向 Structure and configuration of MQ-2 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a TEL: 86-371- 67169070 67169080 FAX: 86-371-67169090 E-mail: sales@hwsensor.com

DHT11 Humidity & Temperature Sensor - Micro4you

This DFRobot DHT11 Temperature & Humidity Sensor features a temperature & humidity sensor complex with a calibrated digital signal output. By using the exclusive digital-signal-acquisition technique and temperature & humidity sensing technology, it ensures high reliability and excellent long-term stability. This sensor includes a resistive-type humidity measurement component and an NTC temperature measurement component, and connects to a highperformance 8-bit microcontroller, offering excellent quality, fast response, anti-interference ability and cost-effectiveness. Each DHT11 element is strictly calibrated in the laboratory that is extremely accurate on humidity calibration. The calibration coefficients are stored as programmes in the OTP memory, which are used by the sensor’s internal signal detecting process. The single-wire serial interface makes system integration quick and easy. Its small size, low power consumption and up-to-20 meter signal transmission making it the best choice for various applications, including those most demanding ones. The component is 4-pin single row pin package. It is convenient to connect and special packages can be provided according to users’ request.

MQ-2 Datasheet - Pololu
by jokomodo 0 Comments favorite 2 Viewed Download 0 Times

MQ-2 Semiconductor Sensor for Combustible Gas Sensitive material of MQ-2 gas sensor is SnO2, which with lower conductivity in clean air. When the target combustible gas exist, The sensor’s conductivity is more higher along with the gas concentration rising. Please use simple electrocircuit, Convert change of conductivity to correspond output signal of gas concentration. MQ-2 gas sensor has high sensitity to LPG, Propane and Hydrogen, also could be used to Methane and other combustible steam, it is with low cost and suitable for different application. Character Configuration *Good sensitivity to Combustible gas in wide range * High sensitivity to LPG, Propane and Hydrogen * Long life and low cost * Simple drive circuit Application * Domestic gas leakage detector * Industrial Combustible gas detector * Portable gas detector Technical Data Basic test loop T Model No. MQ-2 Sensor Type Semiconductor Standard Encapsulation Bakelite (Black Bakelite) Detection Gas Combustible gas and smoke VRL 300-10000ppm Concentration Vc Heater Voltage VH 5.0V±0.2V ACorDC RL Adjustable Load Resistance Heater Resistance Heater consumption Character Sensing Resistance RH DC GND The above is basic test circuit of the sensor. 31Ω±3Ω(Room Tem.) heater voltage (VH) and test voltage (VC) . VH used to supply certified working PH ≤900mW temperature to the sensor, while VC used to detect voltage (VRL) on load resistance Rs 2KΩ-20KΩ(in 2000ppm C3H8 ) (RL)whom is in series with sensor. The sensor has light polarity, Vc need DC...

PING))) Ultrasonic Distance Sensor (#28015) - Parallax Inc

Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267 PING))) Ultrasonic Distance Sensor (#28015) The Parallax PING)))™ ultrasonic distance sensor provides precise, non-contact distance measurements from about 2 cm (0.8 inches) to 3 meters (3.3 yards). It is very easy to connect to microcontrollers such as the BASIC Stamp®, Propeller chip, or Arduino, requiring only one I/O pin. The PING))) sensor works by transmitting an ultrasonic (well above human hearing range) burst and providing an output pulse that corresponds to the time required for the burst echo to return to the sensor. By measuring the echo pulse width, the distance to target can easily be calculated. Features       Key Specifications Range: 2 cm to 3 m (0.8 in to 3.3 yd) Burst indicator LED shows sensor activity Bidirectional TTL pulse interface on a single I/O pin can communicate with 5 V TTL or 3.3 V CMOS microcontrollers Input trigger: positive TTL pulse, 2 µs min, 5 µs typ. Echo pulse: positive TTL pulse, 115 µs minimum to 18.5 ms maximum. RoHS Compliant        Supply voltage: +5 VDC Supply current: 30 mA typ; 35 mA max Communication: Positive TTL pulse Package: 3-pin SIP, 0.1” spacing (ground, power, signal) Operating temperature: 0 – 70° C. Size: 22 mm H x 46 mm W x 16 mm D (0.84 in x 1.8 in x 0.6 in) Weight: 9 g (0.32 oz)

GP2D12 Data Sheet.fm - Sharp Microelectronics of the Americas

GP2D12 Optoelectronic Device FEATURES • Analog output • Effective Range: 10 to 80 cm • LED pulse cycle duration: 32 ms 1 2 3 • Typical response time: 39 ms • Typical start up delay: 44 ms • Average current consumption: 33 mA PIN SIGNAL NAME • Detection area diameter @ 80 cm: 6 cm 1 VO DESCRIPTION 2 GND The GP2D12 is a distance measuring sensor with integrated signal processing and analog voltage output. 3 VCC GP2D12-8 Figure 1. Pinout VCC GND PSD SIGNAL PROCESSING CIRCUIT VOLTAGE REGULATOR OSCILLATOR CIRCUIT LED DRIVE CIRCUIT OUTPUT CIRCUIT LED VO DISTANCE MEASURING IC GP2D12-4 Figure 2. Block Diagram 1 Data Sheet GP2D12 ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings Ta = 25°C, VCC = 5 VDC PARAMETER SYMBOL RATING UNIT Supply Voltage VCC -0.3 to +7.0 V Output Terminal Voltage VO -0.3 to (VCC + 0.3) V Operating Temperature Topr -10 to +60 °C Storage Temperature Tstg -40 to +70 °C Operating Supply Voltage PARAMETER SYMBOL RATING UNIT Operating Supply Voltage VCC 4.5 to 5.5 V Electro-optical Characteristics Ta = 25°C, VCC = 5 VDC PARAMETER SYMBOL Measuring Distance Range ΔL Output Voltage VO CONDITIONS MIN. TYP. MAX. UNIT NOTES 10 80 cm 1, 2 0.25 L = 80 cm 0.4 0.55 V 1, 2 Output Voltage Difference ΔVO Output change at L change 1.75 (80 cm - 10 cm) 2.0 2.25 V 1, 2 Average Supply Current ICC L = 80 cm 33 50 mA 1, 2 - NOTES: 1. Measurements made with Kodak R-27 Gray Card, using the white side, (90% reflectivity). 2. L = Distance to reflective object. VCC (POWER SUPPLY) 38.3 ms ±9.6 ms DISTANCE MEASURMENT OPERATING 1st MEASUREMENT 2nd MEASUREMENT nth MEASUREMENT VO (OUTPUT) UNSTABLE OUTPUT 1st OUTPUT 2nd OUTPUT nth OUTPUT 5.0 ms MAX. GP2D12-5 Figure 3. Timing Diagram 2 Data Sheet GP2D12 RELIABILITY The reliability of requirements of this device are listed in Table 1. Table 1. Reliability TEST ITEMS TEST CONDITIONS FAILURE JUDGEMENT CRITERIA SAMPLES (n), DEFECTIVE (C) Temperature Cycling One cycle -40°C (30 min.) to +70°C in 30 minutes, repeated 25 times n = 11, C = 0 High Temperature and High Humidity Storage +40°C, 90% RH, 500h n = 11, C = 0 High Temperature Storage +70°C, 500h n = 11, C = 0 Low Temperature Storage -40°C, 500h Operational Life (High Temperature) +60°C, VCC = 5 V, 500h Mechanical Shock 100 m / s2, 6.0 ms 3 times / ±X, ±Y, ±Z direction n = 6, C = 0 Variable Frequency Vibration 10-to-55-to-10 Hz i n 1 minute Amplitude: 1.5 mm 2 h i n e a c h X, Y, Z direction n = 6, C = 0 Initial × 0.8 > VO VO > Initial × 1.2 n = 11, C = 0 n = 11, C = 0 NOTES: 1. Test conditions are according to Electro-optical Characteristics, shown on page 2. 2. At completion of the test, allow device to remain at nominal room temperature and humidity (non-condensing) for two hours. 3. Confidence level: 90%, Lot Tolerance Percent Defect (LTPD): 20% / 40%. MANUFACTURER’S INSPECTION Inspection Lot Inspection shall be carried out per each delivery lot. Inspection Method A single sampling plan, normal inspection level II based on ISO 2859 shall be adopted. Table 2. Quality Level DEFECT INSPECTION ITEM and TEST METHOD AQL (%) Major Defect Electro-optical characteristics defect 0.4 Minor Defect Defect to appearance or dimensions (crack, split, chip, scratch, stain)* 1.0 NOTE: *Any one of these that affects the Electro-optical Characteristics shall be considered a defect.

PING)))™ Ultrasonic Distance Sensor (#28015) - Radio Shack

PING)))™ Ultrasonic Distance Sensor (#28015) The Parallax PING))) ultrasonic distance sensor provides precise, non-contact distance measurements from about 2 cm (0.8 inches) to 3 meters (3.3 yards). It is very easy to connect to BASIC Stamp® or Javelin Stamp microcontrollers, requiring only one I/O pin. The PING))) sensor works by transmitting an ultrasonic (well above human hearing range) burst and providing an output pulse that corresponds to the time required for the burst echo to return to the sensor. By measuring the echo pulse width the distance to target can easily be calculated. The PING))) sensor has a male 3-pin header used to supply power (5 VDC), ground, and signal. The header allows the sensor to be plugged into a solderless breadboard, or to be located remotely through the use of a standard servo extender cable (Parallax part #805-00002). Standard connections are show in the diagram to the right. Quick-Start Circuit This circuit allows you to quickly connect your PING))) sensor to a BASIC Stamp® 2 via the Board of Education® breadboard area. The PING))) module’s GND pin connects to Vss, the 5 V pin connects to Vdd, and the SIG pin connects to I/O pin P15. This circuit will work with the example program Ping_Demo.BS2 listed on page 7. Servo Cable and Port Cautions If you want to connect your PING))) sensor to a Board of Education using a servo extension cable, follow these steps: 1. When plugging the cable onto the PING))) sensor, connect Black to GND, Red to 5 V, and White to SIG. 2. Check to see if your Board of Education servo ports have a jumper, as shown at right. 3. If your Board of Education servo ports have a jumper, set it to Vdd as shown. 4. If your Board of Education servo ports do not have a jumper, do not use them with the PING))) sensor. These ports only provide Vin, not Vdd, and this may damage your PING))) sensor. Go to the next step. 5. Connect the servo cable directly to the breadboard with a 3-pin header. Then, use jumper wires to connect Black to Vss, Red to Vdd, and White to I/O pin P15. Board of Education Servo Port Jumper, Set to Vdd © Parallax, Inc. • PING)))TM Ultrasonic Distance Sensor (#28015) • v1.3 6/13/2006

pH Sensor DataSheet - Atlas Scientific

pH Probe Datasheet A pH electrode is a passive device that detects a current generated from hydrogen ion activity. This current (which can be positive or negative) is very weak and cannot be detected with a multimeter, or an analog to digital converter. This weak electrical signal can easily be disrupted and care should be taken to only use proper connectors and cables. ADC Result will always read zero. 00000000 Result will always read zero. The current that is generated from the hydrogen ion activity is the reciprocal of that activity and can be predicted using this simple equation: Where R is the ideal gas constant. T is the temperature in Kelvin. F is the Faraday constant. Because a pH probe is a passive device it can pick up voltages that are transmitted through the solution being measured. This will result in incorrect readings and will slowly damage the pH probe over time. Atlas-Scientific.com Copyright © Atlas Scientific LLC All Rights Reserved pH Probe This pH Probe can be fully submerged up to the BNC connector indefinitely. • pH range: 0-14 (Na+ error at >12.3 pH) • Temperature range: 1˚C to 99˚C • Max pressure: 690 kPa (100PSI) • Dimensions: 12mm X 150mm (1/2" X 6") • Resolution: This is an analog device so, its resolution is limited only by the device reading it. Helpful Operating Tips FIG. 1 FIG. 2 1. The pH Probe is shipped in a plastic bottle containing pH Probe Storage Solution. The probe should remain in the bottle until it is used. If the probe is used infrequently, the bottle and its solution should be saved and the probe stored in it (See Sensor Storage Section). Take out the probe by loosening the plastic top of the bottle counter clockwise and pulling the probe out. Slide the cap and O-ring off the probe. (SEE FIGS 1 & 2).

MCP9808 - +/-0.5°C Maximum Accuracy Digital Temperature Sensor

Description • Accuracy: - ±0.25 (typical) from -40°C to +125°C - ±0.5°C (maximum) from -20°C to 100°C - ±1°C (maximum) from -40°C to +125°C • User-Selectable Measurement Resolution: - +0.5°C, +0.25°C, +0.125°C, +0.0625°C • User-Programmable Temperature Limits: - Temperature Window Limit - Critical Temperature Limit • User-Programmable Temperature Alert Output • Operating Voltage Range: 2.7V to 5.5V • Operating Current: 200 µA (typical) • Shutdown Current: 0.1 µA (typical) • 2-wire Interface: I2C™/SMBus Compatible • Available Packages: 2x3 DFN-8, MSOP-8 Microchip Technology Inc.’s MCP9808 digital temperature sensor converts temperatures between -20°C and +100°C to a digital word with ±0.25°C/±0.5°C (typical/maximum) accuracy. The MCP9808 comes with user-programmable registers that provide flexibility for temperature sensing applications. The registers allow user-selectable settings such as Shutdown or Low-Power modes and the specification of temperature Alert window limits and critical output limits. When the temperature changes beyond the specified boundary limits, the MCP9808 outputs an Alert signal. The user has the option of setting the Alert output signal polarity as an active-low or activehigh comparator output for thermostat operation, or as a temperature Alert interrupt output for microprocessorbased systems. The Alert output can also be configured as a critical temperature output only. This sensor has an industry standard 400 kHz, 2-wire, SMBus/I2C compatible serial interface, allowing up to eight or sixteen sensors to be controlled with a single serial bus (see Table 3-2 for available Address codes). These features make the MCP9808 ideal for sophisticated, multi-zone, temperature-monitoring applications.

LM34 Precision Fahrenheit Temperature Sensors - Texas Instruments

The LM34 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Fahrenheit temperature. The LM34 thus has an advantage over linear temperature sensors calibrated in degrees Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Fahrenheit scaling. The LM34 does not require any external calibration or trimming to provide typical accuracies of ± 1⁄2˚F at room temperature and ± 11⁄2˚F over a full −50 to +300˚F temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM34’s low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies or with plus and minus supplies. As it draws only 75 µA from its supply, it has very low self-heating, less than 0.2˚F in still air. The LM34 is rated to operate over a −50˚ to +300˚F temperature range, while the LM34C is rated for a −40˚ to +230˚F range (0˚F with improved accuracy). The LM34 series is available packaged in hermetic TO-46 transistor packages, while the LM34C, LM34CA and LM34D are also available in the plastic TO-92 transistor package. The LM34D is also available in an 8-lead surface mount small outline package. The LM34 is a complement to the LM35 (Centigrade) temperature sensor.

RECOMMENDED JAVA SETTINGS - OHCORS.com

Common Occurrences within the systems    Issue: User goes to the URL and the logon screen never displays. Possible Cause: Microsoft VM and Java(Sun) both checked Solution: o Check to see if both Microsoft VM and Java(Sun) are loaded onto the machine. If yes, if both are enabled – disable one and then try to access the system again. o To check this – Open Internet Explorer -> Click on Tools -> Click on Internet Options -> Select the Advanced Tab -> Scroll down to section shown below and make sure that ONLY one either Java(Sun) or Microsoft VM is enabled. Important Note! -- If the PC has the Windows 7 Operating System, you may not see Java(Sun) in this location. In order to determine Java(Sun) version you can go to Control Panel \Programs and Features. If the Operating System is Windows 7 and the user has Microsoft VM on the machine, it should be disabled and then the most current version of Java installed. Issue: When the user logs into the site, they receive a message that contains the words, “Data Execution Prevention” OR “DEP” – Internet Explorer displays a message indicating that it is closing in order to protect the computer and then Internet Explorer shuts down. OR you may receive an error message similar to this.

Tags: Java 7, How to ..,

 34567891011