SEARCH

Found 3771 related files. Current in page 1

how to replace air pump on 2008 chevy cobalt

crankshaft grinding machines - AZ spa
by xoxo 0 Comments favorite 3 Viewed Download 0 Times

crankshaft grinding machines AZ spa MACHINE TOOLS • R&D from 1953 • established in 1976 • over 50 year of know-how in the field of grinding machines • leader of crankshaft manufacturing • headquarters and factory located near Venice • quality qualified ISO9001-2008 • over 90% of production is exported SERVICE company AZ spa MACHINE TOOLS Design, construct, innovate and offer better machines: in short this means “never stopping”. We believe that in order to give a better product we have to work hard, treasure our experience, use prime quality source materials, use advanced technology and learn from those who know more than us. That is, the people who use our machines. That’s why each new machine has distinguished forerunners: from the first, a “master” of 1960, each machine has been produced in a variety of models and...

rhode island college anchor notes - Rhode Island College Athletics

Rhode Island College Anchor Notes The Official Newsletter of Rhode Island College Intercollegiate Athletics Or visit us at: www.GoAnchormen.com Vol. X No. 4 Providence, Rhode Island Spring Review/Summer Preview June 2009 RIC Mourns the Passing of James Adams James “Jimmy” Adams Fund Established Rhode Island College was saddened by the loss of legendary former Head Men’s Basketball Coach James Adams who passed away on June 1 at the age of 73 after an illness. Adams spent 21 years at Rhode Island College, serving as an Assistant Athletic Director in addition to his coaching duties. He officially retired in September of 2000 and then went on to work part-time as a supervisor at the college’s Recreation Center until the fall of 2008. He will be inducted into Rhode Island College’s Athletic Hall of Fame this October. The James “Jimmy” Adams Fund has been established in his honor, with all proceeds benefitting RIC student-athletes. Please contact the RIC Athletic Department at (401) 456-8007 to make a contribution to the fund.

Brake Booster Market - Freescale Semiconductor

PERFOMANCE BOOST The Freescale* MPXV4115V pressure sensor is the ideal part for automotive vacuum sensing needs such as those found in the brake booster application. Prepared by Marc Osajda Automotive Sensor Marketing Motorola – Toulouse, France Advanced braking systems are becoming increasingly common in today’s automobiles. Higher level systems and technology now being used in “brake assist systems” (BAS) in several European cars, have made it possible for more efficient and intelligent braking systems. A key functional application block found in these braking systems that has advanced with this technology surge, is the vacuum brake booster function. Here are a few driving factors behind the need and use of the brake booster, which helps ensure a safer braking system. Independent Systems: In current gasoline engine cars, the engine’s intake manifold generates the vacuum for the brake booster. This system works fine with one exception. The amount of vacuum in the brake booster is unknown by the braking system. Thus the amount of amplification is also unknown. If heavy braking is needed, there is no possibility for the brake system to interact with the intake manifold if additional amplification is required. The manufacturer’s interest for having the vacuum generated by an auxiliary vacuum pump is that the brake system can manage the amount of vacuum as required, on demand. This in turns gives it the ability to perform amplification on its own, giving it complete independent from the engine’s operating condition. The auxiliary pump is also able to provide higher amounts of vacuum whenever necessary. In situations calling for heavy braking, the pressure will naturally decrease in the brake booster, also causing a decrease in the amplification during braking. With an external pump it is possible to maintain, or even increase the amplification during a heavy braking phase. Smart Safety: Wheel blocking due to high-braking force is controlled by the Anti-Lock Brake System (ABS). However, it has been observed that in many cases, drivers do not...

Vacuum Brake Booster Testing and Diagnosis.pdf

Vacuum Brake Booster Testing and Diagnosis Vacuum Brake Booster Testing and Diagnosis This procedure will require the use of a hand operated vacuum pump with a vacuum gauge. If you do not own one it can often be rented or borrowed from most “big box” parts stores. (Note: 18”HG is the minimum engine vacuum at idle in gear to effectively operate a vacuum booster 1) Remove vacuum hose from check valve on booster. Place hose from vacuum pump onto check valve and draw booster to 20” of vacuum. 2) Let booster sit with vacuum applied for 5 minutes. If vacuum does not stay steady at 20” it is faulty and needs to be replaced. If vacuum does hold steady at 20” proceed to step 3. 3) With 20” of vacuum in booster depress brake pedal once and release it. The booster should transfer some but not the entire vacuum in reserve. Depending on how hard the pedal is depressed it is normal to see 5-10” of vacuum depleted from reserve. The most important thing is to ensure the booster does transfer vacuum but does NOT transfer the entire vacuum in its reserve. If vacuum remains at 20” OR goes to zero the booster is bad and will need to be replaced. If vacuum transfer is within the above parameter proceed to step 4. 4) Once again draw booster down to 20” of vacuum. Go inside car and depress brake pedal and hold down for 30 seconds. You should see the gauge drop slightly and then hold steady. Vacuum should stay steady as long as you are holding the pedal down. If vacuum drops while pedal is being held down the booster is faulty and will need to be replaced.

BPI 10-06 Temporary reduction in power brake ... - Raybestos Brakes

No. BPI 10-06 Subject: Temporary reduction in power brake assist in extreme cold weather Vehicles Involved: Models: 2009 BUICK ENCLAVE 2009 CHEVROLET TRAVERSE 2009 GMC ACADIA 2009 SATURN OUTLOOK From 9J100008 From 9S100002 From 9J100016 From 9J100003 to to to to 9J190898 9S143268 9J190899 9J190888 Condition: If the brake check valves are NOT installed correctly, an increased amount of brake pedal effort will be required to obtain brake function, and the brake assist system will NOT perform as designed. Repair: Replace the first design brake booster vacuum hose check valve (1) with a second design brake booster vacuum hose check valve (2). An arrow on the second design check valve indicates the vacuum draw direction (3). 1. Remove the fuel injector sight shield (engine cover) from the engine. 4400 Prime Parkway McHenry, IL 60050  (815) 363-9000 Determine where the two brake booster vacuum hose check valves are located. Refer to callouts 1 and 2 in the illustration 2. Release the quick connect (4) from the power brake booster auxiliary pump (3). 3. Remove the protective wrap (5) from the brake booster vacuum hose to locate check valve # (1). 4400 Prime Parkway McHenry, IL 60050  (815) 363-9000 4. Remove the check valve (1) from the brake booster vacuum hose that routes to the power brake booster auxiliary pump (3). 5. Remove the check valve (2) from the brake booster hose that routes to the intake manifold vacuum port (6). Note If necessary, a small amount of denatured alcohol can be used as an assembly aid for installing the vacuum hose to the manifold vacuum port. Do not use soap. 6. Install a new check valve (1) to the brake booster hose that routes to the power brake booster auxiliary pump (3). Ensure the arrow on the check valve (1) ...

Brake Booster - Subaru Outback Forums
by moncoZ 0 Comments favorite 3 Viewed Download 0 Times

(2) Four brake booster installation nuts A: REMOVAL 1) Remove or disconnect the following parts in the engine compartment. (1) Disconnect the connector of brake fluid level gauge. (2) Remove the brake pipe from the master cylinder. (3) Remove the master cylinder installation nut. (1) CAUTION: In order to prevent the contact of the bracket and check valve, be sure to loosen the master cylinder mounting nut while holding the bracket with hand. Otherwise it may deform the bracket. (1) Check valve (2) Bracket (4) Disconnect the vacuum hose from brake booster. 2) Remove the following parts from the pedal bracket. (1) Snap pin and clevis pin Nut Clevis pin Snap pin Operating rod Brake pedal 3) Remove the brake booster while avoiding the brake pipe. NOTE: • Make sure that the booster shell and vacuum pipe are not subject to strong impacts. • Be careful not to drop the brake booster. If the booster is dropped, replace it. • Use special care when handling the operating rod. If excessive force is applied to the operating rod, the angle may change by r3°, and it may result in damage to power piston cylinder. • Be careful when placing the brake booster on floor. • Do not change the push rod length. CAUTION: • Do not disassemble the brake booster.

The ATE T50 Brake Booster - 190SL | 190 SL

Fifty percent less pedal force I n most of the models of the 1950s and 1960s, Mercedes-Benz provided a power brake booster manufactured by ATE. The booster does not pro- vide additional braking capacity, a common misconception, but rather reduces the pedal force required for braking. The power brake is a vacuum-assisted hydraulic component using the pressure difference between engine intake manifold vacuum and atmospheric pressure for its operation. The power unit increases the pressure created physically in the brake master cylinder so that the same braking effect can be produced with less pedal effort. With a brake booster installed, the pedal force required for braking is reduced by 50 percent. The ATE T50 Brake Booster uses vacuum to “boost” the hydraulic brakeline pressure. The booster contains a hydraulic cylinder, a large vacuum piston that presses against the hydraulic cylinder, and a control circuit that regulates the vacuum flow based on brake-line pressures. This technology had been well proven since the early 1900s, and the T50 has been exceptionally reliable over many years of use. The Booster in action The power booster is a very simple design requiring only a vacuum source to operate. In gasoline-engine cars, the engine provides a vacuum suitable for the boosters. Because diesel engines do not produce a vacuum, dieselpowered vehicles must use a separate vacuum pump. A vacuum hose from the intake manifold on the engine pulls air from both sides of the diaphragm when the engine is running. When the driver steps on the brake pedal, the input rod assembly in the booster moves forward, blocking off the vacuum port to the backside of the diaphragm and opening an atmospheric port that allows air to enter the back chamber. Suddenly, the diaphragm has vacuum pulling against one side and air pressure pushing on the other. The result is forward pressure that assists in pushing the input rod, which in turn pushes the piston in the master cylinder. The amount of power assist that’s provided by the booster depends on the size of the diaphragm and the amount of intake manifold vacuum produced by the engine. A larger diaphragm will increase the boost.

Daily Delta Connection Jet Flights to Arrive in ... - SkyWest Airlines

FOR IMMEDIATE RELEASE Daily Delta Connection Jet Flights to Arrive in Twin Falls this Summer Jet Flights Operated by SkyWest Airlines TWIN FALLS, Idaho March 26, 2014 – Flying in and out of Twin Falls is about to get an upgrade with the start of new jet service this summer. The daily Delta Connection flights, operated by SkyWest Airlines, are scheduled to begin June 5. This transition to larger, jet aircraft will continue to make flying out of Magic Valley Regional Airport simple and convenient. “SkyWest is pleased to offer jet service in Twin Falls beginning this summer,” said Mike Thompson, SkyWest Airlines vice president – Market Development. “The new jet service will continue to provide Twin Falls passengers access to destinations around the globe via Delta’s worldwide network.” The twice-daily jet service will be onboard the 50-passenger Bombardier-manufactured Canadair Regional Jet 200 (CRJ200) and will replace the current 30-passenger EMB 120 Brasilia flights. “The beginning of Delta Connection jet service here in Twin Falls is exciting news,” said Bill Carberry, Manager of Magic Valley Regional Airport. “This new aircraft, coupled with excellent connections at Salt Lake City Airport, will keep our travelers moving and the Magic Valley growing well into the future.” Each of the flights between Twin Falls and Salt Lake City has been timed to provide optimum connection opportunities in Salt Lake. From there, passengers can easily connect on hundreds of daily flights to cities from coast to coast and around the world with Delta’s extensive network. Customers may begin booking flights immediately at www.delta.com or by calling Delta reservations at 800.221.1212. Remember, the best fares are always available at www.delta.com. This press release and additional information about SkyWest Airlines can be found at www.skywest.com. About SkyWest Airlines:...

Drive Line / Universal
by Maradoni 0 Comments favorite 3 Viewed Download 0 Times

– Drivelines and Universal Joints Universal Joint Maintenance • Most factory-installed universal joints are sealed and don’t require periodic lubrication • After-market replacement joints are equipped with a grease fitting and must be greased periodically Drive Shaft Problem Diagnosis • Road testing – Vehicle should be driven while accelerating and decelerating as well as at various steady speeds – Vibrations caused by worn U-joints usually occur while accelerating Types and Causes of Vibrations • High speed vibrations – Usually caused by driveshaft imbalance • Vibrations during acceleration – Usually caused by worn double Cardan joint ball and socket • Low speed vibrations – Usually caused by improper operating angles Noise Diagnosis • Clunking noise while accelerating from a dead stop – Usually caused by worn or damaged U-joint – Can be caused by problems including excessive clearance between slip joint and extension housing • Squeaking noise – Often caused by worn or poorly lubricated U-joint Reasons for Universal Joint Failure • Lack of lubrication • Pushing another car • Towing a trailer • Changing gears abruptly • Carrying heavy loads Steps in Lubricating U-Joints 1. Wipe off the nozzle of the fitting 2. Attach the hose of the grease gun to the fitting 3. Pump grease slowly into the fitting 4. Stop pumping when grease appears at the bearing cups Inspecting the Drive Shaft • Check for fluid leaks • Check the U-joints for signs of rust or leakage • Check for movement in the joint while trying to turn the yoke and the shaft in opposite directions • Check the drive shaft for dents, missing weights, and undercoating or dirt...

DRIVESHAFT AND UNIVERSAL JOINT SERVICE ... - worldtracker.org

M10_BIRC4058_05_SE_C10.QXD 3/30/07 Chapter 10:52 AM Page 255 10 DRIVESHAFT AND UNIVERSAL JOINT SERVICE OBJECTIVES After studying Chapter 10, the reader should be able to: 1. Perform the maintenance operations needed to keep a driveshaft operating properly. 2. Diagnose the cause of common FWD driveshaft problems. 3. Recommend the proper driveshaft repair procedure. 4.Correct RWD U-joint angularity and driveshaft balance problems. 5.Remove and replace FWD and RWD driveshafts. 6.Disassemble, inspect, and reassemble the common U-joints. 7.Make normal U-joint and CV joint repairs. 8.Complete the ASE tasks for content area D, Driveshaft and Universal/Constant-Velocity Diagnosis and Repair. KEY TERMS Antilock braking system (ABS) (p. 274) Balancing (p. 268) Grease spray (p. 258) Level protractor (p. 267) Phasing (p. 265) Plug-in connection (p. 272) Reluctor (p. 274) Runout (p. 262) 46106...

« previous  123456789