SEARCH

Found 24 related files. Current in page 1

gambar buaya animasi

2011 Global Assessment Report on Disaster Risk Reduction ...

Menguak Risiko, Menggagas Makna Baru Pembangunan Rangkuman dan Temuan-Temuan Utama United Nations UNISDR berterima kasih kepada organisasi-organisasi yang logonya tercantum di bawah ini atas sumbangan finansial dan berarti mereka ntuk penyusunan Laporan Pengkajian Global tentang Pengurangan Risiko Bencana 2011 ini. Selain itu, sumber daya finansial juga telah secara berlimpah disumbangkan oleh, antara lain, Komisi Eropa, dan Pemerintah Jepang, Norwegia, dan Amerika Serikat. Daftar ucapan terima kasih yang lengkap ada di laporan utama. Judul asli: 2011 Global Assessment Report on Disaster Risk Reduction Revealing Risk, Redefining Development © United Nations 2011. Hak cipta dilindungi. Disclaimer: Pandangan-pandangan yang diungkapkan di dalam publikasi ini tidak dengan sendirinya mencerminkan pandangan-pandangan Sekretariat Perserikatan Bangsa-Bangsa (PBB). Penggunaan penyebutan dan penyajian bahan tidak menunjukkan ungkapan pendapat apapun dari Sekretariat PBB tentang status hukum satu negara, teritori, kota atau wilayah, atau pihak-pihak berwenangnya, atau tentang delinenasi garis depan atau perbatasan. Gambar sampul depan: iStockphoto®, © arindambanerjee Penyuntingan, desain, tata letak, dan produksi: Green Ink, Devon, UK Konsep desain: Parsons New School for Design, New York, USA Dicetak oleh: Information Press, Oxford, UK Laporan Pengkajian Global tentang Pengurangan Risiko Bencana 2011 Menguak Risiko, Menggagas Makna Baru Pembangunan Rangkuman dan Temuan-Temuan Utama United Nations Laporan Pengkajian Global tentang Pengurangan Risiko Bencana 2011 (2011 Global Assessment Report on Disaster Risk Reduction) disusun ketika bencana-bencana terus menyapu bersih hidup dan penghidupan jutaan penduduk di dunia. Dampak gempa bumi yang dahsyat di Haiti pada Januari 2010 dan banjir di Pakistan pada Juli 2010 menunjukkan betapa risiko bencana dan kemiskinan saling berkaitan erat. Sementara itu, pada 2011, banjir di Australia, gempa bumi di Christchurch, Selandia Baru, dan bencana gempa bumi, tsunami dan nuklir di Jepang timur laut yang meluluhlantakkan yang terjadi ketika laporan ini dikirim ke percetakan merupakan pengingat yang sangat tidak menggembirakan betapa negara-negara maju juga sangat terpapar.

SBMPTN 2013 Biologi - Bisa Kimia

Doc. Name: SBMPTN2013BIO999 Doc. Version : 2013-10 | 01. Contoh keberadaan satwa pada suatu habitat yang dijaga dengan baik sebagai upaya pelestarian ex situ adalah… (A) Orang utan di hutan Kalimantan. (B) Cendrawasih di hutan Papua. (C) Rusa di Kebun Raya Bogor. (D) Pesut diSungai Mahakam. (E) Anoa di Pulau Sulawesi 02. Komunitas mikroba yang melekat pada suatu substrat/benda sehingga dapat merusak substrat/benda tersebut disebut… (A) Biodegradator. (B) Bioaktivator. (C) Biokatalis. (D) Biodeposit. (E) Biofilm. 03. Bagian sistem pencernaan yang berperan dalam memecah polipeptida menjadi oligopeptida adalah… (A) Duodenum. (B) Usus besar. (C) Lambung. (D) Jejunum. (E) Ileum. 04. Asam absisat melindungi tanaman yang mengalami kekurangan air melalui mekanisme… (A) Peningkatan pembentukan kutikula. (B) Penurunan tekanan turgor sel penjaga. (C) Peningkatan kecepatan pembelahan sel. (D) Penurunan kecepatan pembentangan sel. (E) Penghambatan pemanjangan sel epidermis. halaman 1 05. Pernyataan yang salah mengenai fotofosforilisasi siklik dan non siklik adalah… (A) Pada fotofosforilisasi non siklik sumber elektron yang memasuki Fotosistem II adalah molekul air, pada fotofosforilisasi siklik, sumber dari elektron adalah Fotosistem I. (B) Pada fotofosforilisasi non siklik penerima elktron terakhir adalah NADP, pada fotofosforilisasi siklik, penerima elektron terakhir adalah Fotosistem I. (C) Hasil dari fotofosforilisasi non siklik adalah ATP, NADPH, dan O2, sedangkan hasil dari fotofosforilisasi siklikhanya ATP. (D) Fotofosforilisasi non siklik melibatkan Fotosistem I dan II, fotofosforilisasi siklik hanya melibatkan Fotosistem II. 06. Perhatikan diagram saluran kreb berikut! Tahap dimana berlangsung hidrasi adalah (A) 1 dan 4 (B) 1 dan 5 (C) 2 dan 6 (D) 3 dan 7 (E) 3 dan 8 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 3117 ke menu search. Copyright © 2013 Zenius Education SBMPTN 2013 Biologi, Kode Soal doc. name: SBMPTN2013BIO999 halaman 2 doc. version : 2013-10 | 07. Perhatikan gambar tahapan mitosis berikut! 10. Grafik berikut menunjukan kinerja insulin sintetis. Tahap telofase, metaphase, anaphase dan profasen ditunjukan oleh urutan angka…

SNMPTN 2012 - Siap Belajar
by top markotop 0 Comments favorite 25 Viewed Download 0 Times

SELEKSI NASIONAL MASUK PERGURUAN TINGGI NEGERI Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Fisika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan Soal SNMPTN 2012 Fisika IPA Kode Soal 634 By Pak Anang (http://pak-anang.blogspot.com) 16. Gerak sebuah benda dijelaskan oleh grafik hubungan antara kecepatan dan waktu seperti ditunjukkan gambar di bawah ini. TRIK SUPERKILAT: Jarak adalah luas daerah pada grafik 𝑣 − 𝑡: 𝑣(m/s) 4 −5 8 𝑡(s) −10 𝑠 = Luas segiempat + Luas trapesium 1 = (𝑝 × ℓ) + 𝑡(𝑎 + 𝑏) 2 1 = (5 × 4) + 4(5 + 10) 2 = 20 + 30 = 50 m Jarak yang ditempuh oleh benda hingga detik ke-8 adalah .... A. 60 m B. 50 m C. 45 m D. 40 m E. 30 m Penyelesaian: Ingat! Pada gerak GLB, jarak dirumuskan dengan: 𝑠 = 𝑣𝑡 Pada gerak GLBB, jarak dirumuskan dengan: 𝑠 = 𝑣0 𝑡 + 1 2 𝑎𝑡 2 Dari grafik kita bisa melihat bahwa benda bergerak mundur secara GLB pada detik ke-0 hingga detik ke-4. Sehingga, jarak yang ditempuh benda saat bergerak GLB adalah: 𝑠1 = 𝑣𝑡 = (−5) × 4 = −20 m Lalu benda kembali bergerak mundur secara GLBB pada detik ke-4 hingga detik ke-8, benda mengalami perlambatan sebesar: ∆𝑣 −10 − (−5) −5 = = = −1,25 ms −2 ∆𝑡 8−4 4 Sehingga jarak yang ditempuh benda saat bergerak GLBB adalah: 𝑎= 𝑠2 = 𝑣0 𝑡 + 1 2 1 𝑎𝑡 = ((−5) × 4) + ( × (−1,25) × (4)2 ) = (−20) + (−10) = −30 m 2 2 Jadi total jarak yang ditempuh benda adalah: 𝑠 = 𝑠1 + 𝑠2 = (−20) + (−30) = −50 m (tanda negatif menyatakan benda bergerak mundur) Bimbel SBMPTN 2013 Fisika by Pak Anang (http://pak-anang.blogspot.com) Halaman 1 17. Kedua ujung sebuah pegas yang memiliki tetapan pegas 50 N/m ditarik masing-masing dengan gaya sebesar 10 N yang saling berlawanan. Pertambahan panjang pegas tersebut adalah .... A. 0,0 m TRIK SUPERKILAT: B. 0,1 m Meskipun pegas menerima dua gaya yang sama besar dan C. 0,2 m berlawanan arah, bukan berarti pegas akan tambah panjang dua kali lipat. Karena kedua gaya tersebut adalah gaya aksi reaksi. D. 0,3 m Sehingga total pertambahan panjang pegas adalah 2𝑥. E. 0,4 m 𝐹 10 𝑥= Penyelesaian: 𝑘 = 50 = 0,2 m Ingat! Pada pegas berlaku: 𝐹 = 𝑘𝑥 Pada soal diketahui: 𝑘 = 50 N/m 𝐹1 = 10 𝑁 𝐹2 = −10 𝑁 (tanda negatif karena arah berlawanan dengan 𝐹1 ) Sehingga pertambahan panjang oleh sebuah gaya 𝐹 = 10 N pada pegas adalah: 𝐹 = 𝑘𝑥 ⇒ 𝑥 = 𝐹 10 = = 0,2 m 𝑘 50 𝑭𝟐 𝑭𝟏 𝑭𝟏 𝑭𝟐 𝒙 Jadi, meskipun ada dua gaya yang sama besar dan berlawanan pada pegas, namun dalam hal ini kedua gaya adalah pasangan gaya aksi-reaksi, sehingga gaya yang beriteraksi pada pegas sebenarnya hanyalah gaya sebesar 10 N saja. Jadi pertambahan panjang pegas adalah:...

Kelas III_SD_IPA_Sularmi.pdf
by cicak 0 Comments favorite 48 Viewed Download 0 Times

Puji syukur penulis sampaikan ke hadirat Tuhan Yang Mahaesa. Oleh karunia dan rahmatNya penyusunan buku Sains Ilmu Pengetahuan Alam, untuk kelas 3 SD dapat penulis selesaikan dengan baik. Penulisan buku ini bertujuan agar para siswa dapat lebih memahami sains sebagai suatu hal yang secara nyata terdapat pada kehidupan sehari-hari. Dalam buku ini memuat berbagai hal yang memenuhi petunjuk pengembangan buku ajar khususnya untuk pelajaran anak SD. Pada setiap bab juga terdapat berbagai bentuk evaluasi sebagai bentuk umpan balik terhadap materi yang disampaikan sebelumnya. Evaluasi berupa soal refleksi, pilihan ganda, isian, dan esai. Untuk memperkaya pengetahuan siswa, juga ditambahkan Wacana Salingtemas. Aspek afektif dan psikomotorik terasah melalui Tugas Proyek Sains. Di akhir setiap bab diberikan rangkuman materi terkait. Selain itu, juga diberikan Latihan Ulangan Umum Semester 1 dan 2. Buku ini juga dilengkapi berbagai ilustrasi dan gambar-gambar. Hal ini dilakukan agar anak-anak lebih tertarik dan mudah mempelajari materi yang disajikan. Bahasa yang digunakan telah disesuaikan dengan kemampuan penguasaan bahasa Indonesia untuk siswa SD. Dengan demikian, diharapkan para siswa lebih mudah mempelajarinya. Mudah-mudahan buku ini dapat dipergunakan dengan baik dan menjadi penunjang belajar anak. Jakarta, Mei 2008 Penyusun

PEMBAHASAN DAN KUNCI JAWABAN GEOGRAFI KELAS XII ...

PEMBAHASAN DAN KUNCI JAWABAN GEOGRAFI KELAS XII PAKET B 1. Berdasarkan soal nomor 1 a. Konsep aglomerasi adalah merupakan gabungan, kumpulan, 2 atau lebih pusat kegiatan dalam 1 lokasi/kawasan terterntu seperti kawasan industri, pemukiman, perdagangan, dsb. b. Konsep morfologi menjelaskan kenampakan bentuk-bentuk muka bumi, seperti dataran rendah, lereng, bukit/dataran tinggi. c. Konsep pola menitik beratkan pada pola keruangan baik fisik maupun sosialnya seperti pola permukiman penduduk, pola aliran sungai, dsb. d. Konsep lokasi mengkaji letak suatu objek dipermukaan bumi. Pada konsep ini utamanya dalam menjawab pertanyaan dimana (where). e. Konsep ketergantungan adalah konsep yang menunjukkan keterkaitan keruangan antar wilayah akibat adanya perbedaan potensi antar wilayah. Seperti keterkaitan antara desa dengan kota. Kunci jawaban D 2. Prinsip-prinsip geografi ada 4 a. Prinsip deskripsi, merupakan penjelasan lebih jauh mengenai gejala-gejala yang diselidiki/dipelajari. Deskripsi disajikan dalam bentuk tulisan, diagram tabel/gambar/peta. b. Prinsip korologi, merupakan gejala, fakta/masalah geografi disuatu tempat yang ditinjau dari sebaran, interelasi, interaksi, dan integrasinya dalam ruang. c. Prinsip persebaran, merupakan suatu gejala dan fakta yang tersebar tidak merata dipermukaan bumi. d. Prinsip interelasi, merupakan suatu hubungan yang saling terkait dalam ruang antara gejala yang 1 dengan gejala lain. e. Prinsip distribusi, merupakan suatu gejala dan fakta yang tidak merata dipermukaan bumi.

KUNCI JAWABAN TUKPD DKI TAHAP 2 MATA PELAJARAN : IPA ...

KUNCI JAWABAN TUKPD DKI TAHAP 2 MATA PELAJARAN : IPA TAHUN PELAJARAN : 2012-2013 Pilihlah jawaban yang benar! 1. Dua orang atlet mulai berlari dengan waktu bersamaan, dan saat mencapai garis finish dicatat dengan hasil seperti gambar. Selisih waktu antara Atlet 1 dengan Atlet 2 adalah .... A. 45s B. 28s C. 17s D. 11s Pembahasan : Waktu tempuh Atlet 1 adalah 17sekon dan Atlet 2 adalah 28sekon. Selisih waktu kedua Atlet = 28s – 22s = 6s Kunci : # (Anulir) 2. 4. 5. Pembahasan : 3. Termometer dinding yang menggunakan skala suhu Celsius menunjukkan suhu ruang kelas 300C. Suhu ruang tersebut sama dengan .... A. 560F B. 540F C. 620F D. 860F Pembahasan: Persamaan antara skala Celsius ke skala Fahrenheit adalah : 9 9 t oC  t  32 o F  30  32 5 5  54  32  86o F Kunci : D Grafik berikut melukiskan pemanasan 3kg air. Jika kalor jenis air 4200J/kg0C, kalor yang diperlukan pada proses R ke S adalah .... A. 12600J B. 126000J C. 252000J D. 378000J Pembahasan: Massa (m) = 3kg, C= 4200J/kg0C dan perubahan suhu (t) = 30 – 10 = 20oC Kalor yang diperlukan : Q = m.C. t = 3kg . 4200J/kg0C . 20oC Q = 126000J Kunci : C

SNMPTN 2012 Matematika - zenius.net

SNMPTN 2012 Matematika Doc. Name: SNMPTN2012MATDAS999 Version : 2013-04 halaman 1 01. Jika a dan b adalah bilangan bulat positif yang memenuhi ab = 220 - 219, maka nilai a+b adalah …. (A) 3 (B) 7 (C) 19 (D) 21 (E) 23 02. Jika 4log3 = k , maka 2log27 adalah … (A) k 6 (B) (C) (D) (E) k 6k 6 k6 k 03. Jika p+1 dan p-1 adalah akar-akar persamaan x2 - 4x + a = 0, maka nilai a adalah …. (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 04. Jika f adalah fungsi kuadrat yang grafiknya melalui titik (1,0), (4,0), dan (0,-4), maka nilai f(7) adalah …. (A) -16 (B) -17 (C) -18 (D) -19 (E) -20 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 2 05. Semua nilai x yang memenuhi (x + 3)(x - 1) ≥ (x - 1) adalah (A) 1 ≤ x ≤ 3 (B) x ≤ -2 atau x ≥ 1 (C) -3 ≤ x ≤ -1 (D) -2 ≥ x atau x ≥ 3 (E) -1 ≥ x atau x ≥ 3 06. Jika 2x - z = 2, x + 2y = 4, dan y + z = 1, maka nilai 3x + 4y + z adalah …. (A) 4 (B) 5 (C) 6 (D) 7 (E) 8 07. Jika diagram batang di bawah ini memperlihatkan frekuensi kumulatif hasil tes matematika siswa kelas XII, maka persentase siswa yang memperoleh nilai 8 adalah…. (A) (B) (C) (D) (E) 12 % 15 % 20 % 22 % 80 % Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 3 08. Ani telah mengikuti tes matematika sebanyak n kali. Pada tes berikutnya ai memperoleh nilai 83 sehingga nilai rata-rata Ani aalah 80, tetapi jika nilai tes tersebut adalah 67, maka rata-ratanya adalah 76. Nilai n adalah …. (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 09. Nilai maksimum fungsi objektif (tujuan) f(x,y) = 3x + 2y dengan kendala x + 2y ≤ 12, x ≥ 2, dan y ≥ 1 adalah …. (A) 16 (B) 18 (C) 32 (D) 36 (E) 38 10. Jika dan , maka determinan matriks AB - C adalah …. (A) -5 (B) -4 (C) 5 (D) 6 (E) 7 11. Agar tiga bilangan a + 2, a - 3, a - 4 merupakan barisan aritmatika, maka suku ke dua harus ditambah dengan …. (A) -3 (B) -2 (C) -1 (D) 1 (E) 2 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 4 12. Jika suku pertama barisan aritmatika adalah -2 dengan beda 3, Sn adalah jumlah n suku pertama deret aritmatika tersebut, dan Sn+2 - Sn = 65, maka nilai n adalah …. (A) 11 (B) 12 (C) 13 (D) 14 (E) 15 13. Jika suatu persegi dengan sisi satu satuan dibagi menjadi 5 persegi panjang dengan luas yang sama seperti ditunjukkan pada gambar di bawah ini, maka panjang ruas garis AB adalah … (A) 3 5 (B) 2 3 (C) 2 5 (D) (E) 1 5 1 5 14. Di suatu kandang tedapat 40 ekor ayam, 15 ekor diantaranya jantan. Di antara ayam jantan tersebut, 7 ekor berwarna putih. Jika banyak ayam berwarna putih adalah 22 ekor, maka banyak ayam betina yang tidak berwarna putih adalah … (A) 5 (B) 7 (C) 8 (D) 10 (E) 15 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education SNMPTN 2012 Matematika, Kode Soal doc. Name: SNMPTN2011MATDAS999 version : 2013-04 | halaman 5 15. Jika f(x) = ax + 3, a ≠ 0 dan f-1 (f-1(9)) = 3, maka nilai a2 + a + 1 adalah … (A) 11 (B) 9 (C) 7 (D) 5 (E) 3 Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 2429 ke menu search. Copyright © 2012 Zenius Education

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 ...

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 1. Lingkaran (x + 6)2 + (y + 1)2 = 25 menyinggung garis y = 4 di titik... A. ( -6, 4 ) B. ( 6 , 4) C. ( -1, 4 ) D. ( 1, 4 ) E. ( 5 , 4 ) Jawab: BAB XI Lingkaran Masukkan nilai y=4 pada persamaan (x + 6)2 + (4 + 1)2 = 25 (x + 6)2 = 25 – 25 = 0 x = -6 Didapat titik x = -6 dan y = 4  (-6,4) Jawabannya A 2. Jika 2x3 – 5x2 – kx + 18 dibagi x - 1 mempunyai sisa 5, maka nilai k adalah... A. -15 B. -10 C. 0 D. 5 E. 10 Jawab: BAB XII Suku Banyak Metoda Horner x3 x= 1 2 x2 x -k 18 2 2 -5 -3 -3 - k -3 ( -3- k) + = kalikan dengan x =1 (15 – k)  sisa =5 15 – k = 5 k = 15 – 5 = 10 Jawabannya E www.belajar-matematika.com 1 3. Luas daerah yang dibatasi oleh kurva y = x2, y = 1, dan x = 2 adalah... A. ∫ (1 − B. ∫ ( ) C. ∫ ( − 1) − 1) D. ∫ (1 − Jawab BAB XVI Integral E. ∫ ( ) − 1) Buat sketsa gambar untuk mengetahui batas luas: terlihat bahwa bidang luasnya (arsiran) bagian atasnya adalah y = x 2 dan bagian bawahnya y = 1 dengan dibatasi oleh batas atas x = 2 dan batas bawah x =1. Dalam notasi integralnya : b ∫ ( b b a a a L =  y2 dx -  y1 dx =  ( y 2  y1) dx − 1) Jawabannya C 4. ( ( A. B. ) ) = .... C. E. D. www.belajar-matematika.com 2 Jawab: BAB VII Trigonometri ( ( + 2 sin cos ) ) = = = =1 = 2 Jawabannya E 5. Lingkaran (x - 3)2 + (y - 4)2 = 25 memotong sumbu –x di titik A dan B. Jika P adalah titik pusat lingkaran tersebut, maka cos ∠APB = ... A. C. B. E. D. Jawab: BAB XI Lingkaran dan BAB VII Trigonometri Sketsa gambar: Lingkaran dengan pusat (3,4) APB merupakan segitiga. www.belajar-matematika.com 3 Untuk menjawab soal ini digunakan teorema di bawah ini: Aturan sinus dan cosinus C  b  a  A c B Aturan cosinus 1. a 2 = b 2 + c 2 - 2bc cos  2. b 2 = a 2 + c 2 - 2ac cos  3. c 2 = a 2 + b 2 - 2ab cos  Kita pakai rumus (3) c = AB = 6 a = b = AP = PB = √3 + 4 = √25 = 5 c 2 = a 2 + b 2 - 2ab cos P 2ab cos P = + − cos P = = = = . . . Jawabannya A 6. Grafik fungsi f(x) = ax3 – bx2 + cx + 12 naik jika.... A. b2 – 4ac < 0 dan a > 0 B. b2 – 4ac < 0 dan a < 0 C. b2 – 3ac > 0 dan a < 0 D. b2 – 3ac < 0 dan a > 0 E. b2 – 3ac < 0 dan a < 0 Jawab: BAB XV Differensial www.belajar-matematika.com 4 Syarat fungsi naik ( )>0 3ax2 - 2bx + c > 0  fungsi naik ( - , 0, + ) * variabel x2 > 0 3a > 0 a>0 *D<0 ( ) > 0 , maka tidak ada titik potong dan singgung di sb x sehingga D < 0  karena (-2b)2 – 4.3a.c < 0 4b2 – 12.a.c < 0 b2 – 3 ac < 0 didapat a > 0 dan b2 – 3 ac < 0 Jawabannya D 7. →0 = .... E. √3 √ A. -1 C. 1 B. -0 D. Jawab: XIV Limit Fungsi →0 = →0 = = = →0 →0 1 . 1. = = =1 Jawabannya C www.belajar-matematika.com

Outline laporan antara - Direktorat Jenderal Penataan Ruang

Tujuan utama dari pekerjaan ini adalah melakukan penyusunan alternatif kebijakan dan penerapan langkah-langkah kegiatan yang tepat secara operasional pada wilayah yang berada pada daerah yang rawan dan sering terlanda bencana alam. Sasaran dari Penyusunan Operasionalisasi Program Penanganan Bencana Alam Bidang Penataan Ruang ini ialah memberikan arah yang jelas bentuk-bentuk penanganan yang baku untuk semua wilayah yang berada pada daerah yang rawan dan sering terlanda bencana alam, mulai dari identifikasi RTRW, indikasi evakuasi yang sesuai dengan Rencana Tata Ruang Wilayah (RTRW), serta pemulihan dan pembinaan lingkungan dalam rencana tata ruang yang akan datang. Kegiatan ini juga diharapkan sebagai bahan dan petunjuk dengan kondisi geografis, tingkat kerawanan dan tingkat bahaya yang ditimbulkan bila terjadi bencana alam, ditunjang dari aspek keruangan. Salah satu langkah awal yang perlu dikaji dalam melaksanakan pekerjaan “Penyusunan Program Penangan Bencana Alam Bidang Penataan Ruang” adalah : 1. Penetapan Kriteria atau batasan Peristiwa Bencana Alam 2. Gambaran Umum Mekanisma Peristiwa Bencana Alam yang terjadi Di Indonesia Kedua hal tersebut selanjutnya menjadi masukan dalam penyusunan Identifikas Zonasi Daerah Bencana Di Indonesia. Identifikasi Zonasi Daerah Bencana Di Indonesia tersebut selanjutnya menjadi salah satu masukan penting dalam menyusun Standar Operasional Prosedur dan Program Penanganan Bencana alam Bidang Penataan Ruang, yang dapat mewakili berbagai peristiwa bencana alam yang terjadi di Indonesia. Operasionalisasi Program Penanganan Bencana Alam Bidang Penataan Ruang Berdasarkan penyebabnya bencana dapat dibedakan menjadi tiga jenis, yaitu bencana alam, bencana akibat ulah manusia, dan bencana kombinasi (Lihat Gambar 2.1). a) Bencana Alam (natural disaster) Bencana Alam merupakan fenomena atau gejala alam yang disebabkan oleh keadaan geologi, biologis, seismis, hidrologis atau disebabkan oleh suatu proses dalam lingkungan alam mengancam kehidupan, struktur dan perekonomian masyarakat serta menimbulkan malapetaka. Bencana yang termasuk bencana alam antara lain: wabah penyakit, hama dan penyakit tanaman, gempa bumi, letusan gunung berapi, tanah longsor, gelombang laut pasang, banjir, erosi, angin taufan, badai tropis, kekeringan dan kebakaran hutan.

QUICK GUIDE Data dan Informasi Bencana ... - WordPress.com

Bencana merupakan bagian dari kehidupan manusia yang datang tanpa diduga kapan, dimana dan bagaimana terjadinya. Hal ini menyebabkan ketidaksiapan masyarakata dalam menghadapi dan akhirnya menimbulkan korban dan kerusakan. Fenomena bencana sebagian besar merupakan kejadian berulang pada tempat yang sama, sehingga dapat dilakukan analisa untuk ke depan dengan menggunakan data historis bencana-bencana sebelumnya. Melalui Data dan Informasi Bencana Indonesi (DIBI) dapat dilihat historis kejadian bencana yang terjadi di Indonesia mulai tahun 18152012. Dalam DIBI dapat disajikan data bencana mulai tanggal kejadian, lokasi, korban dan kerusakan yang ditimbulkan. Analisa yang dapat disajikan melalui DIBI ini adalah grafik, statistik, peta tematik dan crosstab. . PERMINTAAN Berfungsi untuk membuat permintaan data kejadian bencana yang akan ditampilkan. Isikan rentang tanggal (YYYY MM DD), dari kapan sampai kapan. Rentang tanggal juga bisa diisikan hanya pada tahun saja. Apabila ingin melihat semua data maka rentang tanggal tidak usah diisi, langsung klik pada “OK”. . LIHAT DATA Berfungsi untuk melihat data kejadian bencana yang diminta. Fungsi ini sama dengan “LIHAT DATA” pada permintaan. Semua data bencana yang diminta akan ditampilakn secara rinci dan berdasarkan database yang tersimpan. GRAFIK Berfungsi untuk menampilkan grafik data kejadian bencana. Grafik dapat berupa grafik batang dan diagram pie (kue). Klik pada “BUAT GRAFIK” maka akan ditanpilkan grafik variabel bencana berdasarkan tahun kejadian. STATISTIK Berfungsi untuk menampilkan data statistikkejadian bencana seperti jumlah, rata-rata, maksimum, varian,dan deviasi standar. Mulai dari lokasi, dampak bencana, korban dan kerusakan. Klik “LANJUT” maka akan ditampilkan data kejadian bencana sesuai dengan permintaan. Data hasil tampilan dapat disimpan dalam bentuk EXCEL maupun CSV. Cara menyimpanya klik pada pojok kanan tulisan “BUAT EXCEL CSV”. Data secara otomatis akan tersimpan dan dapat digunakan sewaktu-waktu. LAPORAN Berfungsi untuk menyajikan laporan bencana sesuai dengan pernintaan. Data yang tersedia hampir sama dengan di menu statistic. Klik “LANJUT” untuk mendapatkan laporan yang diminta. Hasil dari laporan ini dapat disimpan dalam bentuk EXCEl, CSV dan XML. PETA TEMATIK Berfungsi untuk menampilkan peta tematik berdasarkan variable yang diinginkan. Klik pada “BUAT PETA” maka akan menampilkan sebaran kejadian bencana di Indonesia secara langsung. Peta ini dapat didownlaod dengan cara klik kanan pada peta dan simpan sebagai gambar. CROSSTAB Berfungsi untuk mengetahui hubungan antara 2 variabel. Pilih variable pada kolom tersedia kemudian klik “TAMBAH’. Selanjutnya klik “LANJUT” untuk mendapatkan hasil crosstab sesuai yang diinginkan. Tabel ini dapat dianalisa lebih lanjut dengan menggunakan analisa statistikkhusus untuk tabulasi silang (crosstab). Hasil ini dapat disimpan dalam EXCEl dengan menekan tombol “BUAT EXCEL” di pojok kanan atas.

« previous  123