SEARCH

Found 287 related files. Current in page 1

fungsi linear matematika

1967 kb/s - Fungsi Linear Matematika Full Download


2157 kb/s - [Verified] Fungsi Linear Matematika


2864 kb/s - Fungsi Linear Matematika Direct Download

Electric Fireplaces - International Builders' Show

Electric Fireplaces BUI LT- I N | HD L I N E A R Just plug in one of our electric fireplaces for instant ambience in any room. All of our Built-in and HD Linear models are CSA tested for safety, fit any room style, and are easy to use. They are cool to the touch but will add warmth to any space. Columbia Corner Surround with Arched Rectangle built-in fireplace front shown in Cherry Stain Finish. A division of the Outdoor GreatRoom Company Electric LINEAR Cool to the touch and warm to the eye This hot fireplace feels cool to the touch, yet, puts out heat when you want it. It hangs like a piece of art – easy to install and sets up in minutes. Place it on any interior wall with an electric outlet. Just plug it in and have a beautiful fire instantly. Model GE-58 Select your ideal fire. Fireplace Features Choose from a large range of options – from fire intensity, to backlighting color, to heat range and more! • Ambient backlighting comes standard on all models. • High efficiency LED on fire and backlighting— Uses only 15 watts. • Operating costs as low as a penny per day with flame and backlighting, and 9-18 cents per hour with the heater on.

LM1949 Injector Drive Controller (Rev. C) - Texas Instruments

APPLICATIONS The LM1949 linear integrated circuit serves as an excellent control of fuel injector drive circuitry in modern automotive systems. The IC is designed to control an external power NPN Darlington transistor that drives the high current injector solenoid. The current required to open a solenoid is several times greater than the current necessary to merely hold it open; therefore, the LM1949, by directly sensing the actual solenoid current, initially saturates the driver until the “peak” injector current is four times that of the idle or “holding” current (Figure 19–Figure 22). This guarantees opening of the injector. The current is then automatically reduced to the sufficient holding level for the duration of the input pulse. In this way, the total power consumed by the system is dramatically reduced. Also, a higher degree of correlation of fuel to the input voltage pulse (or duty cycle) is achieved, since opening and closing delays of the solenoid will be reduced.

LM35 Precision Centigrade Temperature Sensors (Rev. D)

Product Folder Sample & Buy Technical Documents Support & Community Tools & Software LM35 www.ti.com SNIS159D – AUGUST 1999 – REVISED OCTOBER 2013 LM35 Precision Centigrade Temperature Sensors FEATURES DESCRIPTION The LM35 series are precision integrated-circuit temperature sensors, with an output voltage linearly proportional to the Centigrade temperature. Thus the LM35 has an advantage over linear temperature sensors calibrated in ° Kelvin, as the user is not required to subtract a large constant voltage from the output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full −55°C to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The low output impedance, linear output, and precise inherent calibration of the LM35 make interfacing to readout or control circuitry especially easy. The device is used with single power supplies, or with plus and minus supplies. As the LM35 draws only 60 μA from the supply, it has very low self-heating of less than 0.1°C in still air. The LM35 is rated to operate over a −55°C to +150°C temperature range, while the LM35C is rated for a −40°C to +110°C range (−10° with improved accuracy). The LM35 series is available packaged in hermetic TO transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface-mount smalloutline package and a plastic TO-220 package.

Kunci Jawaban dan Pembahasan MAT VII A

Kunci Jawaban dan Pembahasan PR Matematika Kelas VII 1 Bab I A. Bilangan Bulat 10. Jawaban: c Pembalap tercepat adalah pembalap yang mempunyai catatan waktu paling sedikit. Juara I pembalap B (50 menit 27 detik) Juara II pembalap E (50 menit 28 detik) Juara III pembalap F (50 menit 30 detik) Pilihan Ganda 1. Jawaban: d –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 Dari garis bilangan tersebut diperoleh: –6 < –1 (ii) 5 > –5 (iv) Jadi, pernyataan yang benar adalah (ii) dan (iv). B. Uraian 1. Posisi hewan-hewan tersebut dapat digambar pada garis bilangan berikut. –18 ↑ Paus 2. Jawaban: a Angka yang semakin kecil menunjukkan bahwa suhu semakin dingin. Jadi, suhu yang lebih dingin dari –2°C adalah –5°C (i). a. 3. Jawaban: b Suhu di bawah nol menunjukkan suhu negatif, sedangkan suhu di atas nol menunjukkan suhu positif. Jadi, penulisan suhu kedua kota tersebut –6°C dan 20°C. 2. a. b. b. 6. Jawaban: d Posisi benda yang berada 25 cm di bawah titik 0 ditulis –25. 7. Jawaban: a Dengan menggambar dan melengkapi garis bilangan, diperoleh: –5 –4 –3 –2 –1 0 1 2 3 4 5 8. Jawaban: b Mentransfer uang berarti mengirimkan uang ke rekening seseorang. Pak Banu mentransfer uang Rp810.000,00 sehingga tabungannya berkurang Rp810.000,00. 9. Jawaban: c –6 < x ≤ –1, x bilangan bulat adalah –5, –4, –3, –2, –1. 2 Kunci Jawaban dan Pembahasan PR Matematika Kelas VII Letak bilangan 5, 3, 7, 8, 4, 6 pada garis bilangan: 4 5 –3 0 7 8 3 6 Urutannya: –6, –3, 0, 3, 6 Letak bilangan –5, 5, –10, 0, –15 pada garis bilangan: –15 –10 –5 d. 6 Urutannya: 3, 4, 5, 6, 7, 8 Letak bilangan –3, 6, 3, –6, 0 pada garis bilangan: –6 c. 12 ↑ Elang Hewan yang berada di lokasi paling dalam adalah paus. Hewan yang berada di lokasi paling tinggi adalah elang. 3 4. Jawaban: d Notasi –8 ≤ x < 1 menyatakan bahwa nilai x yang memenuhi –8, –7, –6, –5, –4, –3, –2, –1, 0. 5. Jawaban: d Diketahui –3 < x < 5, x bilangan bulat. Jadi, anggotanya meliputi –2, –1, 0, 1, 2, 3, 4. –6 0 ↑ ↑ Hiu Lumba-lumba 0 5 Urutannya: –15, –10, –5, 0, 5 Letak bilangan –36, –18, –24, –30, –12 pada garis bilangan: –36 –30 –24 –18 –12 Urutannya: –36, –30, –24, –18, –12 3. x anggota dari –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5 a. 0 < x ≤ 3, nilai x adalah 1, 2, 3 b. –4 ≤ x ≤ 3, nilai x adalah –4, –3, –2, –1, 0, 1, 2, 3 c. x ≤ –3 atau x > 3, nilai x adalah –5, –4, –3, 4, 5 d. x < –2 dan x > –4, nilai x adalah –3 atau x = –3

Kunci Jawaban dan Pembahasan MAT VIII A

Kunci Jawaban dan Pembahasan PR Matematika Kelas VIII 1 Bab I Faktorisasi Bentuk Aljabar 9. Jawaban: d 32p2qr 3 32p2qr3 : 96pq2r2 = 96pq2r2 32 = 96 × p(2 – 1)q(1 – 2)r(3 – 2) 1 = 3 pq–1r A. Pilihan Ganda 1. Jawaban: c 5p2 – 7p + 8 – p2 + 3p – 10 = 5p2 – p2 – 7p + 3p + 8 – 10 = 4p2 – 4p – 2 2. Jawaban: c 5(3x – 1) – 12x + 9 = 15x – 5 – 12x + 9 = (15 – 12)x – 5 + 9 = 3x + 4 3. Jawaban: d 8(3x + 6y) + 3(2x – 6y) = 24x + 48y + 6x – 18y = 30x + 30y 4. Jawaban: a (x2 – 4x + y) – (2x – 2y + x2) = x2 – 4x + y – 2x + 2y – x2 = (1 – 1)x2 + (–4 – 2)x + (1 + 2)y = –6x + 3y 5. Jawaban: b 5a2(2a3 + 11c) = 5a2(2a3) + 5a2(11c) = 10a5 + 55a2c 6. Jawaban: d (x + 2)(2x – 1) = x(2x – 1) + 2(2x – 1) = 2x2 – x + 4x – 2 = 2x2 + 3x – 2 7. Jawaban: a (2x – 3)(–3x + 5) = 2x(–3x + 5) – 3(–3x + 5) = –6x2 + 10x + 9x – 15 = –6x2 + 19x – 15 8. Jawaban: c (3y – 4)(4x2 + 6xy + y2) = 3y(4x2 + 6xy + y2) – 4(4x2 + 6xy + y2) = 12x2y + 18xy2 + 3y3 – 16x2 – 24xy – 4y2 2 Kunci Jawaban dan Pembahasan PR Matematika Kelas VIII pr = 3q 10. Jawaban: c 3x 2 : 6x 2 4 3 3 = 2 x : 2 x2 = 3 x 2 3 2 x 2 = 1 x x2 = x 11. Jawaban: c –(8p3qr2)3 = –83(p3)3q3(r2)3 = –512p9q3r6 12. Jawaban: c (3x – 4y)2 = (3x – 4y)(3x – 4y) = 3x(3x – 4y) – 4y(3x – 4y) = 9x2 – 12xy – 12xy + 16y2 = 9x2 – 24xy + 16y2 13. Jawaban: a (6x + 5)2 + (–7x – 4)2 = (36x2 + 60x + 25) + (49x2 + 56x + 16) = 36x2 + 49x2 + 60x + 56x + 25 + 16 = 85x2 + 116x + 41 14. Jawaban: b (a + b)3 = a3 + 3a2b + 3ab2 + b3 (x – 4)3 = (x + (–4))3 = x3 + 3x2(–4) + 3x(–4)2 + (–4)3 = x3 – 12x2 + 48x – 64 15. Jawaban: d 4r 2 (r − 3) 4r2(r – 3) : r(r – 3)2 = r(r − 3)2 4r = r−3 16. Jawaban: b 24x6q7 : (4q2x3 × 3qx) = 24x6q7 4q2x 3 × 3qx 24 x6 = q7 = 12 × 4 × q3 x = 2x2q4 24x 6q7 12q3 x 4 17. Jawaban: b 28p5q7r4 b. : 6q2r3p4) = 28p5q7r4 = × (3q2pr3 14p2q7r4 × 18. Jawaban: d Keliling = 2((2x + 2) + (2x – 1)) = 2(4x + 1) = (8x + 2) cm 19. Jawaban: b s = (2x – 3) cm L = s2 = (2x – 3)2 = (2x)2 + 2(2x)(–3) + (–3)2 = (4x2 – 12x + 9) cm2 20. Jawaban: c = (x – 2) m p = (x – 2) + 6 m = (x + 4) m Luas = p × = (x + 4)(x – 2) = (x2 + 2x – 8) m2 B. Uraian 1. a. 6a + 3a – 9a + 7b = (6 + 3 – 9)a + 7b = 7b b. 10x2 – 3xy – 5y2 – 18x2 + 5xy + y2 = (10 – 18)x2 + (5 – 3)xy + (1 – 5)y2 = –8x2 + 2xy – 4y2 c. d. 2. a. b. c. d. 3. a. 4 + 3p + 5(p – 2) = 4 + 3p + 5p – 10 = 8p – 6 (4p – 11q – 9r) – (9p + 8q – 8r) = 4p – 9p – 11q – 8q – 9r + 8r = (4 – 9)p – (11 + 8)q – (9 – 8)r = –5p – 19q – r c. (17y2 + 11y + 18) – (15y2 + 2y – 24) = 17y2 – 15y2 + 11y – 2y + 18 + 24 = (17 – 15)y2 + (11 – 2)y + 18 + 24 = 2y2 + 9y + 42 d. 15(4y2 + 6y + 3) + 11(2y2 – 4y – 5) = 60y2 + 90y + 45 + 22y2 – 44y – 55 = 60y2 + 22y2 + 90y – 44y + 45 – 55 = (60 + 22)y2 + (90 – 44)y + 45 – 55 = 82y2 + 46y – 10 1 2p3 4. a. b. (2x – 6)(5x – 2) = 2x(5x – 2) – 6(5x – 2) = 10x2 – 4x – 30x + 12 = 10x2 – 34x + 12 c. (3x – 4y)(12x2 – 16xy + 9y2) = 3x(12x2 – 16xy + 9y2) – 4y(12x2 – 16xy + 9y2) = 36x3 – 48x2y + 27xy2 – 48x2y + 64xy2 – 36y3 = 36x3 – (48 + 48)x2y + (27 + 64)xy2 – 36y3 = 36x3 – 96x2y + 91xy2 – 36y3 d. 8p4qr2 : 2pq2r2 2(a – 3b) + 3(2a + 7b) = 2a – 6b + 6a + 21b = 2a + 6a – 6b + 21b = 8a + 15b (3r – 9s) + (7r + 16s) = 3r – 9s + 7r + 16s = 3r + 7r + 16s – 9s = 10r + 7s (3a + 9 – 6b) + (11b + 7a – 5) = 3a + 9 – 6b + 11b + 7a – 5 = 3a + 7a – 6b + 11b + 9 – 5 = 10a + 5b + 4 (–x2 + 6xy + 3y2) + (3x2 – 4xy – 7y2) = –x2 + 6xy + 3y2 + 3x2 – 4xy – 7y2 = –x2 + 3x2 + 6xy – 4xy + 3y2 – 7y2 = 2x2 + 2xy – 4y2 6(2y2 – 3x + 6) + 7(3y2 – 2x + 6) = 12y2 – 18x + 36 + 21y2 – 14x + 42 = 12y2 + 21y2 – 18x – 14x + 36 + 42 = 33y2 – 32x + 78 (10a + 9b – 12) – (9a + 8b – 2) = 10a – 9a + 9b – 8b – 12 + 2 = (10 – 9)a + (9 – 8)b – 12 + 2 = a + b – 10 –5a2(2a2 + 8a2b – 5ab2) = (–5 × 2)a4 – (5 × 8)a4b + (–5 × (–5))a3b2 = –10a4 – 40a4b + 25a3b2 8p4 qr 2 = 2pq2r 2 8 = 2 × p4 p × 1 q q2 = 4 × p3 × q × 1 5. a. b. c. d. r2 r2 4p3 = q × (4p2q)3 = 43p6q3 = 64p6q3 (5a + 3b)2 = (5a)2 + 2(5a)(3b) + (3b)2 = 25a2 + 30ab + 9b2 2 2 (7a – 4a) = (7a2)2 – 2(7a2)(4a) + (4a)2 = 49a4 – 56a3 + 16a2 (2q + 3p – 7)2 = (2q + 3p – 7)(2q + 3p – 7) = 2q(2q + 3p – 7) + 3p(2q + 3p – 7) – 7(2q + 3p – 7) = 4q2 + 6pq – 14q + 6pq + 9p2 – 21p – 14q – 21p + 49 = 4q2 + 12pq – 28q – 42p + 9p2 + 49 (3a + 4)4 = 1(3a)4 + 4(3a)3(4) + 6(3a)2(4)2 + 4(3a)(4)3 + 1(4)4 Suku ke-3: 6(3a)2(4)2 = 6 × 9a2 × 16 = 864a2 Jadi, koefisien suku ke-3 yaitu 864.

kunci jawaban ipa
by nflplayer 0 Comments favorite 4 Viewed Download 0 Times

KUNCI JAWABAN IPA MATEMATIKA 46. Jawaban : C y = ax² + bx + c, melalui (1, 12) 12 = a + b + c, dimana a, b, c, merupakan deret aritmetika y’ = 2ax + b m = 2 . a. 1 + 4 6 = 2a + 4 a =1 a + c = 2b c=7 3a + 2b + c = 3 + 8 +7 = 18 47. Jawaban : C Misal cos x = y = 81 2x – 3y = - 81 51. Jawaban : B tan p = √3 ---- p = 60° sin q = ---- cos q = √ √ = cos (p + q) + cos 2q = cos 60° cos q – sin 60° sin q + cos² q - sin² q = √ - √ + 52. Jawaban : B f(x) = , g(x) = 7log (f o g)(x) = 7log /(1 - 27log ) + cos +cos (sin ) + (sin (f o g)(x) + (f o g)( ) = = A (x 2 sin ) – sin ) + (sin – sin )= ( ) = ( ) ( ) + = -1 A . 2 sin sin 53. Jawaban : A = A . 2 sin sin (π - ) = A . 2 sin sin = A . 2 sin 1 = 2A A=½ 48. Jawaban : D ² - ² ² =1 Asimtot : y = x, sejajar 6x – 3y + 5 = 0 =2 =4 ² = 16 1 −1 2 0 1 =( )( )= 2 1 3 1 2 −1 1 −2 ( ) 3 +2 +1 = k + 1 + 6p + 4 = -2 7k = -7 --- k = -1 1 −2 =( ) −1 0 0 −1 0 2 (( )-1 = ( ) = (− − ) 1 1 a + b + c + d = -2 54. Jawaban : D I I=I I √36 + 4 + 25 = √ ² + 36 + 4 x² = 25 x = 5 atau x = -5 a .p <0 49. Jawaban : D Sudah jelas 50. Jawaban : B 81 x 81 x log = log ----- log = log IaIIpI 6 12 10 √65 .√65 = log² = log 81 log x y log = log ........1) ---- x log = ylog 81 = log² Agar -6x – 12 + 10 < 0, maka nilai x yang memenuhi hanyalah x = 5 55. Jawaban : B (K’L’) = = log 81 log (1) : (2) ----- ........2) ² ² = log = log ---- x = y Dari (1) diperoleh log . log = log 81 . log log = log 81 <0 1 3 2 √2 ² + (3 √2)² = √26

Kunci Jawaban - Download Center SIMDIK.INFO

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA, B. INGGRIS, B. IDONESIA DAN IPA Panitia Tes Ujicoba Kompetensi Peserta Didik (TUKPD) KUNCI JAWABAN TUKPD TAHAP-1 MATA PELAJARAN : MATEMATIKA (Paket A dan B) PAKET A (Semua wilayah sama) NO JAWABAN NO JAWABAN NO JAWABAN NO JAWABAN 1 B 11 D 21 B 31 C 2 A 12 A 22 A 32 C 3 A 13 D 23 B 33 A 4 A 14 C 24 D 34 C 5 C 15 A 25 A 35 C 6 B 16 B 26 C 36 D 7 A 17 D 27 B 37 A 8 D 18 A 28 B 38 C 9 C 19 B 29 C 39 B 10 A 20 B 30 D 40 B PAKET B (Jakarta Pusat, Jakarta Utara, Jakarta Selatan) NO JAWABAN NO JAWABAN NO JAWABAN NO JAWABAN 1 D 11 ANULIR (#) 21 ANULIR (#) 31 C 2 C 12 D 22 D 32 C 3 ANULIR (#) 13 A

Integrated Circuit FM Receiver using Bipolar Linear ... - Working Group

Even if FM radio broadcasting is a fundamental means of communication, it can’t escape one of the big trends in electronics today: miniaturization. As mobile communication devices are gaining more and more functionalities, people still want to have the option of listening to FM radio on their smart phones or MP3 players. This can only be achieved through the miniaturization of the FM reception process by implementing all its functions into a microchip. This miniaturization process is widely used in the industry, but has not been explored in depth by undergraduate students. In order to appreciate the complexity of such a task, we decided to design an FM receiver in a microchip. To make the project more interesting, we chose to create a user interface facilitating its use.

Autodesk® - Consortech
by robertogiao 0 Comments favorite 4 Viewed Download 0 Times

Autodesk Robot Structural Analysis Autodesk Robot Structural Analysis Professional 2009 is collaborative, Professional 2009 is collaborative, versatile, versatile, and fast software compete and and fast software to help youto help you compete global economy. Through building win in the and win in the global economy. Through building information modeling information modeling (BIM), Autodesk (BIM), Autodesk Analysis Professional can Robot Structural Robot Structural Analysis complex models with exceptionally calculate Professional calculates even your most complex models with powerful finite element auto-meshing, exceptionally powerful finite element non-linear algorithms, and a comprehensive auto-meshing, non-linear delivering collection of design codes, algorithms, and a comprehensive hours. Autodesk results in minutes, notcollection of design codes, delivering results Professional Robot Structural Analysisin minutes, not hours. Seamless, collaborative workflow offers seamless, collaborative workflow interoperability with 3D bidirectional and interoperability with 3D bidirectional to Autodesk companion products, links to Autodesk companion products. The together with an open application open application programming interface (API) programming interface (API) provide a provides a scalable, country-specific analysis scalable, country-specific analysis solution solution for a range of structures. These include for are not limited to buildings, bridges, civil but many different types of structures, including buildings, bridges, civil and and specialty structures. specialty structures. ®

How To Make A Straight Line Fit Using Excel

Let's consider the following example: One has measured the force necessary to extend a spring from its rest (equilibrium position) for various extensions. The goal is to find the spring constant. The theory (Hook's Law) predicts the linear dependence between the force and the change of the length of the spring: F = -kx To find the spring constant k, one needs to plot the negative force -F as a function of x and find the straight-line fit. The slope of that line is equal to the spring constant k. Finding the best straight-line fit could be quite time consuming if done with a calculator. Using Microsoft Excel program significantly simplifies the whole procedure. Follow the steps shown below to make a graph and then draw a straight line that fits your data. A. Start Microsoft Excel 2010 (or Excel 2007). B. Enter your data into Excel spreadsheet. C. Highlight all cells containing data. In our example, the first column (A) contains values of x, whereas the second column (B) contains values of force -F: D. From the "Insert" tab select "Charts - Scatter". Use the first type of scatter charts – “Scatter with only Markers”. You should see a simple plot prepared by Excel. E. Next step is to add axis labels and legend to the graph. Select “Layout” tab from “Chart Tools”. Then add a header using the “Chart Title” button and add axis labels using “Axis Titles” button (both for horizontal and for vertical axes). Optionally, you may edit or simply remove the legend. Grab and drag a corner of the graph (chart) to enlarge its size. F. The last step is to add the linear fit (a straight line fit) to your graph (chart). Click once anywhere inside the graph area. Select the “Layout” tab from “Chart Tools”. Click on the “Trendline” icon and select the “Linear Trendline” option. You should see a graph similar to this: ...

« previous  123456789