SEARCH

Found 3492 related files. Current in page 1

ford e350 upper ball joint torque specs

Universal grinding machine for the most Demanding ... - Hardinge Inc.

KEL-VIVA Universal grinding machine for the most Demanding Applications KEL-VIVA The innovative grinding system 2 2 different wheelheads UR-wheelhead R-wheelhead Wheelhead with fixed intermediate section B-axis KEL-SET automatic grinding wheel measuring system (option) Heidenhain control system GRINDplusIT Windows 2000 2-processors control system C-axis for unround components and threads (option) Hydrostatics X- and Z-guideways no stick slip good damping Scale on upper table for setting-up of table assemblies metric imperial Prepared connecting plates for table flooding for diamond cooling for stabilizing of measuring unit Flushing of base pan for good conveyance of grinding dust prevents dirt deposits Precision with hydrostatics These CNC universal cylindrical grinding machines have been developed to satisfy the highest demand for quality. Intensive application studies and the use of stateof-the-art technology in development and production have resulted to this universal grinding machine. Hydrostatic guideways and a strict separation of the machine base from the assemblies, generating heat or vibration, provide superb precision and productivity. The excellent static and dynamic rigidity of the machine base permits a three-point set-ut. The KEL-VARIA therefore has no particular requirements on the building’s...

HYDRAULICS & BRAKE BOOSTER CATALOG - Aisin

The clutch master cylinder is a device that transforms mechanical force into hydraulic pressure. As the driver presses the clutch pedal, the pedal lever applies force to the clutch master cylinder which transmits hydraulic pressure to the clutch release (slave) cylinder that disconnects engine power to the transmission. Structure and Components [Conventional Type] Inlet Union Oil Spill Hole Aluminum Body Flare Nut Pipe Joint Boot Spring Primary Cup Resin Piston Push Rod Rel Secondary Cup Spring Metallic Clevis Damper Stud Bolt The clutch master cylinder structure consists of the piston, cups, and springs, built within a precision machined body. The primary cup, positioned on the leading side of the body, functions to create hydraulic pressure when fluid is forced inside by the piston. Located on the trailing side is the secondary cup, which guides the piston and prevents fluid from leaking. When the clutch pedal is pressed, the primary cup is blocked away by the piston from the oil spill port leading to the reservoir tank, pressure in the cylinder rises as the fluid is fed through the pipeline. When the clutch pedal is released, the hydraulic pressure and the force of the return spring pulls back the piston to relieve fluid back into the reservoir. The clutch master cylinder is what provides the necessary force to control the application of drivetrain power. 2 Clutch Master Cylinder Variations Clutch Master Cylinder Variations Conventional Port-less Type Stand Alone / Integrated Reservoir Type Types With and Without Stud Bolts Types With and Without Clevis Damper Types With and Without Clutch Booster ...

Your Webinar Will Begin Shortly - Motor Coach Industries

Welcome to the MCILEARN Series Your Webinar Will Begin Shortly Today’s Topic Shake Out: Vibration Analysis If you do not have an audio connection, dial 877-739-5904 and enter the Audio PIN number given to you on your screen © 2012 Motor Coach Industries Int'l, Inc. and its subsidiaries. All Rights Reserved. Learning Objectives • Identify the different classifications of vehicle driveline vibrations • Begin to diagnose & locate the source of a vehicle driveline vibration • Provide a correction to eliminate the vibration from the vehicle © 2012 Motor Coach Industries Int'l, Inc. and its subsidiaries. All Rights Reserved. Safety Message • Always use personal protection devices – Safety glasses, ear protection, etc • Always observe all safety precautions listed in the Maintenance Manual including but not limited to: – – – – – – Ensure coach is on a level surface Ensure parking brake is applied Chock wheels Always use jack stands Shut off batteries Utilize Lock Out/Tag Out procedures © 2012 Motor Coach Industries Int'l, Inc. and its subsidiaries. All Rights Reserved. Vibration Identification: Identifying the Source of a Vibration © 2012 Motor Coach Industries Int'l, Inc. and its subsidiaries. All Rights Reserved. Vibration Analysis Primary sources of vibrations • Tires & Wheels – Rims, tires, hub & drum assemblies • Driveline – Driveshaft & slip-joint, u-joints, yokes & flanges – Working angle of driveshaft • Engine & Transmission – Crankshaft, injectors & cylinders, vibration dampers, engine supports, exhaust...

SECTION 205-00 Driveline System — General Information

GENERAL PROCEDURES Driveshaft Runout and Balancing Special Tool(s) Dial Indicator Gauge with Holding Fixture 100-002 (TOOL-4201-C) or equivalent Mastertech® Series MTS 4000 Driveline Balance and NVH Analyzer (Vetronix) 257-00018 or equivalent Driveshaft Inspection NOTE: Driveline vibration exhibits a higher frequency and lower amplitude than high-speed shake. Driveline vibration is directly related to the speed of the vehicle and is noticed at various speeds. Driveline vibration can be perceived as a tremor in the floorpan or heard as a rumble, hum or boom. NOTE: Refer to Specifications in this section for all runout specifications. 1. NOTE: Do not make any adjustments before carrying out a road test. Do not change the tire pressure or the vehicle load. Carry out a visual inspection of the vehicle. Operate the vehicle and verify the condition by reproducing it during the road test. • 2. With the vehicle in NEUTRAL, position it on a hoist. For additional information, refer to Section 100-02. • 3. The concern should be directly related to vehicle road speed, not affected by acceleration or deceleration or could not be reduced by coasting in NEUTRAL. The driveshaft should be kept at an angle equal to or close to the curb-weighted position. Use a twin-post hoist or a frame hoist with jackstands. Inspect the driveshaft for damage, undercoating or incorrectly seated U-joints. Rotate the driveshaft slowly by hand and feel for binding or end play in the U-joint trunnions. Remove the driveshaft. For additional information, refer to Section 205-01. Inspect the slip yoke splines for any galling, dirt, rust or incorrect lubrication. Clean the driveshaft or install new U-joints as necessary. Install a new driveshaft if damaged. After any corrections or new components are installed, recheck for the vibration at the road test speed.

driveshaft series 6Q – 175 – 250 - SPX Cooling Technologies

driveshaft series 6Q – 175 – 250 I N S TA L L AT I O N - O P E R AT I O N - M A I N T E N A N C E M92-1442B I SSU E D 4/2013 R EAD AN D U N D E R STAN D TH I S MAN UAL PR IOR TO OPE RATI NG OR S E RVICI NG TH I S PROD UCT. Before installing the driveshaft, be sure the motor and Geareducer are on level bases and that their shafts are in reasonable alignment. Note match numbers on the driveshaft flanges and remove the yokes. Coat the motor shaft and Geareducer shaft with “Thred-Gard” (Crane Packing Co.) or similar lubricant. Place the key halfway in motor and Geareducer shafts, then install yokes as shown in Figure 4. Use a rubber mallet or wood block when tapping yokes to prevent damage. Tighten each yoke set screw against key. Align match numbers on tube and yoke flanges and bolt the tube and flange assembly to the Geareducer yoke while supporting the motor end of the tube and flange assembly. Progressively tighten bolts to 60 ft·lbƒ (82 N·m) torque. Slide the motor so that motor yoke can be bolted to the tube and flange assembly without pushing or pulling on the bushings. Align match numbers and bolt the motor yoke to the tube and flange assembly. Progressively tighten bolts to 60 ft·lbƒ (82 N·m) torque. The distance between tube and yoke flanges should be as shown in Figure 4.

Drive Line / Universal
by Maradoni 0 Comments favorite 3 Viewed Download 0 Times

– Drivelines and Universal Joints Universal Joint Maintenance • Most factory-installed universal joints are sealed and don’t require periodic lubrication • After-market replacement joints are equipped with a grease fitting and must be greased periodically Drive Shaft Problem Diagnosis • Road testing – Vehicle should be driven while accelerating and decelerating as well as at various steady speeds – Vibrations caused by worn U-joints usually occur while accelerating Types and Causes of Vibrations • High speed vibrations – Usually caused by driveshaft imbalance • Vibrations during acceleration – Usually caused by worn double Cardan joint ball and socket • Low speed vibrations – Usually caused by improper operating angles Noise Diagnosis • Clunking noise while accelerating from a dead stop – Usually caused by worn or damaged U-joint – Can be caused by problems including excessive clearance between slip joint and extension housing • Squeaking noise – Often caused by worn or poorly lubricated U-joint Reasons for Universal Joint Failure • Lack of lubrication • Pushing another car • Towing a trailer • Changing gears abruptly • Carrying heavy loads Steps in Lubricating U-Joints 1. Wipe off the nozzle of the fitting 2. Attach the hose of the grease gun to the fitting 3. Pump grease slowly into the fitting 4. Stop pumping when grease appears at the bearing cups Inspecting the Drive Shaft • Check for fluid leaks • Check the U-joints for signs of rust or leakage • Check for movement in the joint while trying to turn the yoke and the shaft in opposite directions • Check the drive shaft for dents, missing weights, and undercoating or dirt...

DRIVESHAFT AND UNIVERSAL JOINT SERVICE ... - worldtracker.org

M10_BIRC4058_05_SE_C10.QXD 3/30/07 Chapter 10:52 AM Page 255 10 DRIVESHAFT AND UNIVERSAL JOINT SERVICE OBJECTIVES After studying Chapter 10, the reader should be able to: 1. Perform the maintenance operations needed to keep a driveshaft operating properly. 2. Diagnose the cause of common FWD driveshaft problems. 3. Recommend the proper driveshaft repair procedure. 4.Correct RWD U-joint angularity and driveshaft balance problems. 5.Remove and replace FWD and RWD driveshafts. 6.Disassemble, inspect, and reassemble the common U-joints. 7.Make normal U-joint and CV joint repairs. 8.Complete the ASE tasks for content area D, Driveshaft and Universal/Constant-Velocity Diagnosis and Repair. KEY TERMS Antilock braking system (ABS) (p. 274) Balancing (p. 268) Grease spray (p. 258) Level protractor (p. 267) Phasing (p. 265) Plug-in connection (p. 272) Reluctor (p. 274) Runout (p. 262) 46106...

XT100-08am Driveshaft Vibration.pdf - JagRepair.com - Jaguar ...

X-TYPE DATE 05/04 Amended 09/04 XT100-08 TECHNICAL BULLETIN SERVICE Driveshaft Vibration – Diagnostic Method – Repair MODEL 2002-04 MY X-TYPE VIN C00001-E02938 Remove and destroy Bulletin XT100-08, dated 05/04. Replace with this Bulletin. Revisions are marked with a bar and in bold text. Issue: A new procedure has been developed for use after the WDS Vehicle Vibration Analyzer (VVA) has confirmed a vehicle vibration. Action: After a driveshaft vibration has been confirmed using WDS VVA, follow the workshop procedure outlined below. WORKSHOP PROCEDURE Note: There is no Labor Time Allowance to carry out road test diagnosis. Jaguar recommends a claim of 0.50 hrs. as straight time for VVA. Warning: Driveshaft bolts are one-time use only. Use new bolts for the final repair. Existing bolts may be reused throughout the diagnostic procedures. Raise vehicle on twin-post lift. Check for alignment of the green line on the rear differential flange with white paint spot on the rear of the driveshaft. If not aligned continue from step 3; if aligned continue from step 16. Remove the rear driveshaft joint to rear differential flange bolts and links where accessible. Rotate the driveshaft and remove the remaining rear driveshaft joint to rear differential flange securing bolts and links. Displace driveshaft from the rear differential flange. Remove and discard the gasket from the rear differential flange (where installed). Clean the mating faces. Install a new gasket to the rear differential flange, if previously installed. NOTE: THE INFORMATION IN TECHNICAL BULLETINS IS INTENDED FOR USE BY TRAINED, PROFESSIONAL TECHNICIANS WITH THE KNOWLEDGE, TOOLS, AND EQUIPMENT TO DO THE JOB PROPERLY AND SAFELY. IT INFORMS THESE TECHNICIANS OF CONDITIONS THAT MAY OCCUR ON SOME VEHICLES, OR PROVIDES INFORMATION THAT COULD ASSIST IN PROPER VEHICLE SERVICE. THE PROCEDURES SHOULD NOT BE PERFORMED BY “DO-ITYOURSELFERS.” DO NOT ASSUME THAT A CONDITION DESCRIBED AFFECTS YOUR CAR. CONTACT A JAGUAR RETAILER TO DETERMINE WHETHER THE BULLETIN APPLIES TO YOUR VEHICLE. Date of issue 05/04 Amended 09/04

How to Diagnose Vibrations
by Maradoni 0 Comments favorite 2 Viewed Download 0 Times

Vibration Diagnostics S tart 1 Gather Info When did vibration start? Where is vibration felt? What road conditions? Under load or high torque conditions? During acceleration/deceleration? Speed dependent? RPM dependent? Noise? Suspension modified recently? Lube clean and at proper level? 2 Important: Use factory service manuals and procedures and refer to all applicable safety precautions when servicing vehicles. This document is intended to assist with drivetrain vibration diagnosis. It does not guarantee an immediate solution nor does it guarantee warranty responsibility or reimbursement. Refer to Roadranger.com for Product Warranty Statements, Warranty Manual, and Warranty Guidelines. 6 Vibrations While Stationary Previous work on clutch or engine Y es In the road test in Step 2, the vehicle was run up to the suspected RPM and the transmission shift lever was placed in neutral. No Y es No If clutch work recently done, problem could be related to the clutch. Verify proper clutch was installed. If engine work recently done, problem could be related to the engine. Contact your engine distributor. 4 No Problem is related to the clutch. Road Test Have vehicle driver recreate complaint condition, if possible Leave trailer attached Run up to suspected RPM and put transmission in neutral Simulate Conditions Speed Related? Y es Does ride height meet OEM specs Y es No No Perform visual inspection and use Eaton Driveline Angle Analyzer (DAA). U-joint bearing cups and trunnions Bearing straps Flange yoke / companion flange Yoke-mounted damper Parking brake Center bearing Fasteners Driveshaft for damage / missing weights Driveshaft slip spline (wear / bottoming / inadequate engagement) Cab mounts / air ride system Correct per OEM procedures. Speed RPM Gear Position Coast Under power Loaded / Unloaded Problem Solved No Remove all drive axle shafts and lock in power divider. Run truck in same condition as when complaint occurred. Y es Done! Problem Solved Isolate Suspect Shaft No Y es Problem is related to the wheel end. Take known good wheel assembly and test replacement from wheel to wheel to isolate problem.

2014 WORLD CUP PREVIEW - CIES Football Observatory

About the CIES Football Observatory The CIES Football Observatory is a unique project initiated in 2005 by Drs Raffaele Poli and Loïc Ravenel under the name of the Professional Football Players Observatory (PFPO). Since 2011 it is one of the cornerstones of the broader CIES Sports Observatory project, dedicated to the statistical analysis of sport in all its diversity. Two annual reports are published for football. In January, the Demographic Study presents an in-depth analysis of club composition and player characteristics in 31 top division leagues of UEFA member countries. In June, the Annual Review analyses clubs and players in the big-5 European leagues from a demographic, economic and pitch performance perspective. Methodological rigour coupled with a deep knowledge of football guarantee high quality analyses at competitive rates. For more information: www.football-observatory.com About the CIES The International Centre for Sports Studies (CIES) is an independent study centre located in Neuchâtel, Switzerland. It was created in 1995 as a joint venture between the Fédération Internationale de Football Association (FIFA), the University of Neuchâtel, the City and State of Neuchatel. Using a multi-disciplinary approach CIES provides research, top-level education and consulting services to the sports world with the aim of overcoming the complexities of sport in today’s society and improving how it is governed and managed. For more information: www.cies.ch

« previous  123456789