SEARCH

Found 324 related files. Current in page 1

contoh soalan quadratic equation

SMART SOLUTION Tes Potensi Akademik SBMPTN 2013

Rangkuman Materi SBMPTN 2013 SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI Disertai Teori Ringkas dan Pembahasan Soal Tes Potensi Akademik (TPA) Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Ringkasan Materi SBMPTN Tes Potensi Akademik (TPA) Penalaran Verbal (Sinonim, Antonim, dan Analogi) By Pak Anang (http://pak-anang.blogspot.com) A. PENALARAN VERBAL 1. SINONIM (Padanan Kata) Soal-soal sinonim, kemampuan yang dituntut adalah adik-adik mampu mencari arti dari sebuah kata pada pilihan jawaban yang tersedia. Tips agar adik-adik mudah menyelesaikan soal tentang sinonim adalah sering membaca. Nah, saat menemukan kata-kata asing, jangan ditinggalkan begitu saja, catat dan coba mencari padanan katanya di Kamus Besar Bahasa Indonesia. TRIK SUPERKILAT: Seringkali ada pilihan jawaban yang hampir mirip dengan soal. Biasanya jawaban ini adalah diberikan sebagai jawaban jebakan. Contoh soal sinonim: PARTIKELIR = .... A. Tukang parkir B. Partisan C. Partisi D. Swasta E. Enterprener Pembahasan: Jawaban B dan C mirip dengan kata yang digunakan pada soal. Biasanya ini mudah kita eliminasi sebagai jebakan jawaban..... Sehingga mempemudah kita dalam menjawab soal sinonim ini. Jawaban yang tepat adalah ”swasta”. 2. ANTONIM (Lawan Kata) Soal tentang antonim ini kebalikan dari sinonim. Dalam soal antonim adik-adik dituntut untuk mencari lawan kata dari soal yang diberikan. Contoh soal antonim: TERKATUNG A.Melayang B.Pasti C.Ombak D.Terperosok E.Terbenam

fx-991ES PLUS C - Support - Casio
by bodo 0 Comments favorite 5 Viewed Download 0 Times

Contents Important Information ............................................................. 2 Sample Operations .................................................................. 2 Initializing the Calculator ........................................................ 2 Safety Precautions .................................................................. 2 Handling Precautions.............................................................. 2 Removing the Hard Case ........................................................ 3 Turning Power On and Off ...................................................... 3 Adjusting Display Contrast .................................................... 3 Key Markings ........................................................................... 3 Reading the Display ................................................................ 4 Using Menus ............................................................................ 5 Specifying the Calculation Mode .......................................... 5 Configuring the Calculator Setup .......................................... 5 Inputting Expressions and Values ......................................... 7 Recurring Decimal Calculations ......................................... 10 Toggling Calculation Results ............................................... 14 Basic Calculations................................................................. 14 Remainder Calculations ....................................................... 18 Prime Factorization ............................................................... 19 Function Calculations ........................................................... 20 Complex Number Calculations (CMPLX) ........................... 25 Using CALC............................................................................ 26 Using SOLVE.......................................................................... 27 Statistical Calculations (STAT) ............................................. 29 Base-n Calculations (BASE-N) ............................................. 33 Equation Calculations (EQN) ............................................... 35 Matrix Calculations (MATRIX)............................................... 37 Creating a Number Table from Two Functions (TABLE) .... 39 Vector Calculations (VECTOR) ............................................. 41 Inequality Calculations (INEQ) ............................................ 43 Using VERIFY (VERIF) .......................................................... 45 Distribution Calculations (DIST) .......................................... 47 Scientific Constants .............................................................. 50 Metric Conversion ................................................................. 51 Calculation Ranges, Number of Digits, and Precision....... 52 Errors ...................................................................................... 54 Before Assuming Malfunction of the Calculator... ............. 56

Panduan penulisan Penerbitan Buku Teks - PDPT

Panduan Penulisan Buku Panduan ini merupakan petunjuk penulisan buku pelajaran (ilmiah populer) yang digunakan untuk menentukan kelayakan naskah bagi penerbit. Panduan ini membahas pengertian buku pelajaran & diktat, tujuan penulisan buku pelajaran, isi buku pelajaran, sampul buku, bagian pembuka, bagian utama dan bagian penutup serta ketentuan jumlah halaman. Buku Pelajaran (Text book) & Diktat Buku pelajaran adalah bahan/materi pelajaran yang dituangkan secara tertulis dalam bentuk buku dan digunakan sebagai bahan pelajaran (sumber informasi) sebuah mata kuliah bagi mahasiswa dan pengajar susuai dengan kebutuhan lapangan/industry dan tuntutan perkembangan teknologi dan atau kurikulum. Diktat adalah catatan tertulis suatu bidang studi yang disiapkan oleh guru/dosen untuk mempermudah pengayaan materi pelajaran atau bidang studi yang dibahas dalam proses pembelajaran (Ilvandri, 2011). Diktat yang baik merupakan draft buku ajar yang belum diterbitkan. Tujuan penulisan buku pelajaran a. Menyediakan buku susuai dengan kebutuhan mahasiswa, institusi dan lapangan/ industry serta serta tuntutan perkembangan teknologi atau kurikulum. b. Mendorong penulis/dosen untuk berkreasi dan kreatif membagikan ilmunya kepada masyarakat. c. Mendorong penulis untuk meng-update ilmunya sesuai dengan kriteria tuntutan buku layak terbit mencakup subdstansi, bahasa dan potensi pasar. d. Mendukung penulis untuk menerbitkan buku bila belum terbit. Isi Buku Pelajaran Isi buku pelajaran berupa teori, konsep, formula atau aturan terkini dilengkapi dengan contoh-contoh masalah atau studi kasus serta solusinya. Isi buku harus orsinil dengan merujuk dari berbagai sumber. Informasi tepat, dapat dipercaya dan dipertanggungjawabkan kepada pembaca dan semua pihak terkait. Isi tersusun dengan baik atau dengan alur informasi yang mudah dipahami. Buku pelajaran dan diktat yang baik memenuhi tiga aspek pendidikan yaitu ilmu pengetahuan (knowledge), keterampilan (skills) dan sikap atau perilaku (attitude). Aspek tersebut seperti yang dinyatakan oleh UNESCO (1994) yaitu...

Distributed Optimal Control for Multi-agent Trajectory Optimization

This paper presents a novel optimal control problem, referred to as distributed optimal control, that is applicable to multiscale dynamical systems comprised of numerous interacting agents. The system performance is represented by an integral cost function of the macroscopic state, and is optimized subject to a hyperbolic partial differential equation known as the advection equation. The microscopic control laws are derived from the optimal macroscopic description using a potential function approach. The optimality conditions and computational complexity of the distributed optimal control problem are first derived analytically and, then, demonstrated numerically through a multi-agent trajectory optimization problem. Key words: Optimal Control, Distributed Control, Robotic Navigation, Multilevel Control, Large-scale Systems.

Excel 2010: Formulas and Charts
by josep2001 0 Comments favorite 18 Viewed Download 0 Times

Excel 2010 is a spreadsheet software in the new Microsoft 2010 Office Suite. Excel allows you to store, manipulate and analyze data in organized workbooks for home and business tasks. Three types of basic data In a spreadsheet there are three basic types of data that can be entered. • • • labels - (text with no numerical value) constants - (just a number -- constant value) formulas* - (a mathematical equation used to calculate) data types examples descriptions LABEL Name or Wage or Days anything that is just text CONSTANT 5 or 3.75 or -7.4 any number FORMULA =5+3 or = 8*5+3 math equation *ALL formulas MUST begin with an equal sign (=). Page 4 of 19 Operands Operator Name How to type the sign Alternative + Addition Hold down the shift key and press the Plus sign (+) located next to the backspace Press the Plus sign (+) located on the Num Lock keypad section. – Subtraction Press the dash (hyphen “- Press the Minus sign (-) “) key located next to the located on the Num Lock number zero. keypad section. * Multiplication Hold down the shift key Press the asterisk (*) key and press the number 8 on the Num Lock keypad key – the asterisk (*) / Division Press the forward slash (/) Press the forward slash (/) located under the question key on the Num Lock mark (?) keypad

CHAPTER 4: RF/IF CIRCUITS Introduction - Analog Devices

CHAPTER 4 RF/IF CIRCUITS INTRODUCTION SECTION 4.1: MIXERS THE IDEAL MIXER DIODE-RING MIXER BASIC OPERATION OF THE ACTIVE MIXER REFERENCES SECTION 4.2: MODULATORS SECTION 4.3: ANALOG MULTIPLIERS REFERENCES SECTION 4.4: LOGARITHMIC AMPLIFIERS REFERENCES SECTION 4.5: TRUE-POWER DETECTORS SECTION 4.6: VARIABLE GAIN AMPLIFIER VOLTAGE CONTROLLED AMPLIFIERS X-AMPS DIGITALLY CONTROLLED VGAs REFERENCES SECTION 4.7: DIRECT DIGITAL SYNTHESIS DDS ALIASING IN DDS SYTEMS DDS SYSTEMS AS ADC CLOCK DRIVERS AMPLITUDE MODULATION IN A DDS SYSTEM SPURIOUS FREE DYNAMIC RANGE CONSIDERATIONS REFERENCES SECTION 4.8: PHASE-LOCKED LOOPS PLL SYNTHESIZER BASIC BUILDING BLOCKS THE REFERENCE COUNTER THE FEEDBACK COUNTER, N FRACTIONAL-N SYNTHESIZERS NOISE IN OSCILLATOR SYSTEMS PHASE NOISE IN VOLTAGE-CONTROLLED OSCILLATORS LEESON'S EQUATION CLOSING THE LOOP PHASE NOISE MEASUREMENTS REFERENCE SPURS CHARGE PUMP LEAKAGE CURRENTS... BASIC LINEAR DESIGN SECTION 4.8: PHASE-LOCKED LOOPS (cont.) REFERENCES 4.73 RF/IF CIRCUITS INTRODUCTION CHAPTER 4: RF/IF CIRCUITS Introduction From cellular phones to 2-way pagers to wireless Internet access, the world is becoming more connected, even though wirelessly. No matter the technology, these devices are basically simple radio transceivers (transmitters and receivers). In the vast majority of cases the receivers and transmitters are a variation on the superheterodyne radio shown in Figure 4.1 for the receiver and Figure 4.2 for the transmitter.

Selecting Centrifugal Pumps - KSB

© Copyright by KSB Aktiengesellschaft Published by: KSB Aktiengesellschaft, Communications (V5), 67225 Frankenthal / Germany All rights reserved. No part of this publication may be used, reproduced, stored in or intro­ duced in any kind of retrieval system or transmitted, in any form or by any means (electro­ nic, mechanical, photocopying, recording or otherwise) without the prior written permission of the publisher. 4th completely revised and ex­ panded edition 2005 Layout, drawings and compo­sition: KSB Aktiengesellschaft, Media Production V51 ISBN 3-00-017841-4 ... Contents Nomenclature...................................................................6 Pump Types .................................................................8–9 Selection for Pumping Water. .........................................10 . Pump Data................................................................................10 Pump Flow Rate.......................................................................10 Developed Head and Developed Pressure of the Pump. ............10 . Efficiency and Input Power.......................................................10 Speed of Rotation.....................................................................11 Specific Speed and Impeller Type. .............................................11 . Pump Characteristic Curves......................................................13 System Data..............................................................................16 System Head ............................................................................16 Bernoulli’s Equation..................................................................16 Pressure Loss Due to Flow Resistances.....................................18 . Head Loss in Straight Pipes.......................................................18 Head Loss in Valves and Fittings. .............................................22 . System Characteristic Curve. ....................................................26 . Pump Selection.........................................................................28 . Hydraulic Aspects.....................................................................28 Mechanical Aspects..................................................................29

Soal dan Pembahasan Matematika IPA SNMPTN 2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011 1. Diketahui vektor u = (a, -2, -1) dan v = (a, a, -1). Jika vektor u tegak lurus pada v , maka nilai a adalah ... A. -1 B. 0 C. 1 D. 2 E. 3 Jawab: Vektor: vektor u tegak lurus pada v maka u . v = 0 u = −2 , v = −1 −2 . −1 −1 (a – 1) (a-1) = 0 maka a = 1 −1 = a2 – 2a + 1 = 0 (a - 1)2 = 0 Jawabannya adalah C 2. Pernyataan berikut yang benar adalah ... A. Jika sin x = sin y maka x = y B. Untuk setiap vektor u , v dan w berlaku u . ( v . w ) = ( u . v ). w C. Jika b  f ( x) dx = 0, maka a D. Ada fungsi f sehingga E. 1 – cos 2x = 2 cos2 x f ( x )= 0 Lim f(x) ≠ f(c) untuk suatu c xc www.belajar-matematika.com - 1 Jawab: Trigonometri, vektor, integral, limit A. Ambil nilai dimana sin x = sin y  sin α = sin (1800 – α ) ambil nilai α = 600  sin 600 = sin 1200 ; tetapi 600 ≠ 1200 Pernyataan SALAH B. Operasi u . ( v . w ) tak terdefinisi karena v . w = skalar, sedangkan u = vektor vektor . skalar = tak terdefinisi Pernyataan SALAH C. Ambil contoh cari cepat hasil dimana b  f ( x) dx = 0 ; a 1 Didapat b = 1 dan a = -1 maka f(x)= x   x dx = 0  1 terbukti : f(x) = x bukan f(x) = 0 x2 | Pernyataan SALAH D. Ambil contoh f(x) = Lim xc f(x) = Lim x 1 ( ( = ( ( ) ( )( ) = ) ( ) Lim f(x) ≠ f(c)  2 ≠ 1 xc ) ( )( ) = ) ( ) =2 Pernyataan BENAR E. 1 – cos 2x = 1 – ( 2cos2 x – 1) = 1 + 1 - 2cos2 x = 2 - 2cos2 x = 2 ( 1 – cos2 x) Pernyataan SALAH Jawabannya adalah D www.belajar-matematika.com - 2 = (1 – 1) = 0 3. Luas daerah di bawah y = -x2 +8x dan di atas y = 6x - 24 dan terletak di kuadran I adalah.... a. ∫ (− b. ∫ (− c. ∫ (− +8 ) +8 ) +8 ) d. ∫ (6 − 24) e. ∫ (6 − 24) Jawab: Integral: +∫ ( + ∫ (− + ∫ (− + ∫ (− + ∫ (− − 2 − 24) + 2 + 24) + 2 + 24) +8 ) +8 ) kuadran I titik potong kedua persamaan : y1 = y2 -x2 +8x = 6x-24 -x2 +8x - 6x+24 = 0 -x2 +2x + 24 = 0 x2 -2x - 24 = 0 (x - 6) (x+4)0 x = 6 atau x = -4  karena di kuadran I maka yang berlaku adalah x = 6  y = 6.6 – 24= 12 berada di titik (6,12) www.belajar-matematika.com - 3 L = ∫ (− = ∫ (− +8 ) +8 ) + ∫ ((− + ∫ (− Jawabannya adalah B + 8 ) − (6 − 24)) + 2 + 24) 4. sin 350 cos 400 - cos 35 sin 400 = A. cos 50 B. sin 50 C. cos 950 D. cos 750 E. sin 750 Jawab: Trigonometri: Pakai rumus: sin (A - B) = sin A cos B - cos A Sin B A= 350 ; B = 400 = sin (350 - 400) = sin -50 Cos (90 0 -  ) = sin   rumus Cos (90 0 - (-50) ) = sin -50   = -50 Cos 950 = sin -50 Jawabannya adalah C 5. Diketahui g(x) = ax2 – bx + a – b habis dibagi x – 1. Jika f(x) adalah suku banyak yang bersisa a ketika dibagi x – 1 dan bersisa 3ax + b2 + 1 ketika dibagi g(x), maka nilai a adalah...... A. -1 B. -2 C. 1 D. 2 Jawab: Suku Banyak: g(x) = ax2 – bx + a – b habis dibagi x – 1  g(1) = 0 g(1) = a . 1 – b .1 + a – b = 0 =a–b+a–b=0 2a – 2b = 0 2a = 2b  a = b karena a = b maka: g(x) = ax2 – ax + a – a = ax2 – ax www.belajar-matematika.com - 4 E. 3 f(x) dibagi dengan f(x-1) sisa a  f(1) = a f(x) dibagi dengan g(x) sisa 3ax + b2 + 1 f(x) dibagi dengan ax2 – ax sisa 3ax + b2 + 1 f(x) dibagi dengan ax(x – 1) sisa 3ax + b2 + 1 teorema suku banyak: Jika suatu banyak f(x) dibagi oleh (x- k) akan diperoleh hasil bagi H(x) dan sisa pembagian S  f(x) = (x- k) H(x) + S f(x) dibagi dengan ax(x – 1) sisa 3ax + b2 + 1 f(x) = ax (x - 1) H(x) + (3ax + b2 + 1) substitusikan nilai nol dari pembagi yaitu x = 0 dan x = 1  dari ax (x - 1) ambil x = 1  untuk x = 1 f(1) = a . 1 (1 – 1) H(0) + 3a.1 + b2 + 1 a = 0 + 3a + b2 + 1  diketahu a = b, masukkan nilai a = b a = 3a + a2 + 1 a2 + 2a + 1 = 0 (a+1)(a+1) = (a+1)2 = 0 a = -1 Jawabannya adalah A 6. Rotasi sebesar 450 terhadap titik asal diikuti dengan pencerminan terhadap y = -x memetakan titik (3,4) ke .... A. √ B. − Jawab: ,√ √ ,√ C. D. √ √ ,−√ ,−√ E. − Transformasi Geometri:  cos  Rotasi sebesar 450 terhadap titik asal =   sin    sin    cos     0  1 pencerminan terhadap y = -x    1 0     www.belajar-matematika.com - 5 √ ,√

NYS Mathematics Glossary* – Algebra 2/Trig - Regents Exam Prep ...

NYS Mathematics Glossary* – Algebra 2/Trig *This glossary has been amended from the full SED Commencement Level Glossary of Mathematical Terms (available at http://www.emsc.nysed.gov/ciai/mst/math/glossary/home.html) to list only terms indicated to be at the Algebra 2/Trig level.) This Glossary, intended for teacher use only, provides an understanding of the mathematical terms used in the Regents-approved course entitled Algebra 2/Trig (as reflected in the NYS Mathematics Core Curriculum). A a + bi form The form of a complex number where a and b are real numbers, and i = −1 . abscissa The horizontal or x-coordinate of a two-dimensional coordinate system. absolute value The distance from 0 to a number n on a number line. The absolute value of a number n is indicated by n . Example: −3 = 3 , +3 = 3 , and 0 = 0 . absolute value equation An equation containing the absolute value of a variable. Example: x+3 = 9 absolute value function A function containing the absolute function of a variable. ⎧ x, x ≥ 0 ⎫ Example: f ( x) = x = ⎨ ⎬ ⎩ − x, x < 0 ⎭ absolute value inequality An inequality containing the absolute value of a variable. Example: x + 3 < 9 adjacent angles Two coplanar angles that share a common vertex and a common side but have no common interior points. Example: In the figure, ∠AOB and ∠BOC are a pair of adjacent angles, but ∠AOC and ∠BOD are not adjacent. A B C O D 2 adjacent sides Two sides of any polygon that share a common vertex. algebraic equation A mathematical statement that is written using one or more variables and constants which contains an equal sign. Examples: 3y + 5 = 1 2 x − 5 = 11 log 5 ( x − 3) = 2 2x = 1 8 algebraic expression A mathematical phrase that is written using one or more variables and constants, but which does not contain a relation symbol ( <, >, ≤, ≥, =, ≠ )...

ALGEBRA 2 and TRIGONOMETRY
by Jimakon 0 Comments favorite 14 Viewed Download 0 Times

Please visit our Web site at: www.amscopub.com When ordering this book, please specify: N 159 K or ANSWER KEY/ALGEBRA 2 AND TRIGONOMETRY Copyright © 2009 by Amsco School Publications, Inc. No part of this Answer Key may be reproduced in any form without written permission from the publisher except by those teachers using the AMSCO textbook ALGEBRA 2 AND TRIGONOMETRY, who may reproduce or adapt portions of this key in limited quantities for classroom use only. Printed in the United States of America 1 2 3 4 5 6 7 8 9 10 14 13 12 11 10 09 14580AK_FM.pgs Contents The Integers 1 The Rational Numbers 4 Real Numbers and Radicals 7 Relations and Functions 12 Quadratic Functions and Complex Numbers 21 Sequences and Series 29 Exponential Functions 33 Logarithmic Functions 38 Trigonometric Functions 42 More Trigonometric Functions 49 Graphs of Trigonometric Functions 54 Trigonometric Identities 64 Trigonometric Equations 73 Trigonometric Applications 75 Statistics 79 Probability and the Binomial Theorem 89 ...

« previous  123456789