SEARCH

Found 2338 related files. Current in page 1

2005 vw passat 1 8t vacuum hose diagram

Rhode Island College Anchor Notes - Rhode Island College Athletics

Rhode Island College Anchor Notes The Official Newsletter of Rhode Island College Intercollegiate Athletics www.ric.edu/athletics Vol. VI No. 4 Providence, Rhode Island 75th Intercollegiate Athletics Anniversary Marks Most Successful Season in School History RIC Teams Win Five Championships Never in the 75 years of Rhode I sland College’s intercollegiate athletics history hav e the Anchormen and Anchorwomen been as successful as they w ere this past y ear. RIC teams garne red five Little East Conference titles, cul The 2005 Rhode Island College Baseball Team mina ting with the ba seba ll squad’s LEC Confer ence Championship and trip to the NCAA Division III Tournament. The softball team was also ver y succe ssful as the Anchorwomen were the Little East R egular Season Champions The 2005 Rhode Island College Softball Team and won the Eastern College Athletic Conf ere nce ( ECAC) Ne w England Division II I Championship. The men’s basketball and the women’s volleyball teams were the Little East Conference Regular Season Co-Champions The 2004-05 Rhode Island College in their respective sports. The Men’s Basketball Team men’s hoop squad was also the Easte rn College Athletic Conferenc e ( ECAC) New England Division II I Tournament runner-up. The women’s tennis team wer e the undefeated Little East Conferenc e Regula r S eason The 2004 Rhode Island College Women’s Tennis Team Champions as well. “I t was a very significant year for us,” RIC Director of...

Brake Booster Market - Freescale Semiconductor

PERFOMANCE BOOST The Freescale* MPXV4115V pressure sensor is the ideal part for automotive vacuum sensing needs such as those found in the brake booster application. Prepared by Marc Osajda Automotive Sensor Marketing Motorola – Toulouse, France Advanced braking systems are becoming increasingly common in today’s automobiles. Higher level systems and technology now being used in “brake assist systems” (BAS) in several European cars, have made it possible for more efficient and intelligent braking systems. A key functional application block found in these braking systems that has advanced with this technology surge, is the vacuum brake booster function. Here are a few driving factors behind the need and use of the brake booster, which helps ensure a safer braking system. Independent Systems: In current gasoline engine cars, the engine’s intake manifold generates the vacuum for the brake booster. This system works fine with one exception. The amount of vacuum in the brake booster is unknown by the braking system. Thus the amount of amplification is also unknown. If heavy braking is needed, there is no possibility for the brake system to interact with the intake manifold if additional amplification is required. The manufacturer’s interest for having the vacuum generated by an auxiliary vacuum pump is that the brake system can manage the amount of vacuum as required, on demand. This in turns gives it the ability to perform amplification on its own, giving it complete independent from the engine’s operating condition. The auxiliary pump is also able to provide higher amounts of vacuum whenever necessary. In situations calling for heavy braking, the pressure will naturally decrease in the brake booster, also causing a decrease in the amplification during braking. With an external pump it is possible to maintain, or even increase the amplification during a heavy braking phase. Smart Safety: Wheel blocking due to high-braking force is controlled by the Anti-Lock Brake System (ABS). However, it has been observed that in many cases, drivers do not...

Vacuum Brake Booster Testing and Diagnosis.pdf

Vacuum Brake Booster Testing and Diagnosis Vacuum Brake Booster Testing and Diagnosis This procedure will require the use of a hand operated vacuum pump with a vacuum gauge. If you do not own one it can often be rented or borrowed from most “big box” parts stores. (Note: 18”HG is the minimum engine vacuum at idle in gear to effectively operate a vacuum booster 1) Remove vacuum hose from check valve on booster. Place hose from vacuum pump onto check valve and draw booster to 20” of vacuum. 2) Let booster sit with vacuum applied for 5 minutes. If vacuum does not stay steady at 20” it is faulty and needs to be replaced. If vacuum does hold steady at 20” proceed to step 3. 3) With 20” of vacuum in booster depress brake pedal once and release it. The booster should transfer some but not the entire vacuum in reserve. Depending on how hard the pedal is depressed it is normal to see 5-10” of vacuum depleted from reserve. The most important thing is to ensure the booster does transfer vacuum but does NOT transfer the entire vacuum in its reserve. If vacuum remains at 20” OR goes to zero the booster is bad and will need to be replaced. If vacuum transfer is within the above parameter proceed to step 4. 4) Once again draw booster down to 20” of vacuum. Go inside car and depress brake pedal and hold down for 30 seconds. You should see the gauge drop slightly and then hold steady. Vacuum should stay steady as long as you are holding the pedal down. If vacuum drops while pedal is being held down the booster is faulty and will need to be replaced.

BPI 10-06 Temporary reduction in power brake ... - Raybestos Brakes

No. BPI 10-06 Subject: Temporary reduction in power brake assist in extreme cold weather Vehicles Involved: Models: 2009 BUICK ENCLAVE 2009 CHEVROLET TRAVERSE 2009 GMC ACADIA 2009 SATURN OUTLOOK From 9J100008 From 9S100002 From 9J100016 From 9J100003 to to to to 9J190898 9S143268 9J190899 9J190888 Condition: If the brake check valves are NOT installed correctly, an increased amount of brake pedal effort will be required to obtain brake function, and the brake assist system will NOT perform as designed. Repair: Replace the first design brake booster vacuum hose check valve (1) with a second design brake booster vacuum hose check valve (2). An arrow on the second design check valve indicates the vacuum draw direction (3). 1. Remove the fuel injector sight shield (engine cover) from the engine. 4400 Prime Parkway McHenry, IL 60050  (815) 363-9000 Determine where the two brake booster vacuum hose check valves are located. Refer to callouts 1 and 2 in the illustration 2. Release the quick connect (4) from the power brake booster auxiliary pump (3). 3. Remove the protective wrap (5) from the brake booster vacuum hose to locate check valve # (1). 4400 Prime Parkway McHenry, IL 60050  (815) 363-9000 4. Remove the check valve (1) from the brake booster vacuum hose that routes to the power brake booster auxiliary pump (3). 5. Remove the check valve (2) from the brake booster hose that routes to the intake manifold vacuum port (6). Note If necessary, a small amount of denatured alcohol can be used as an assembly aid for installing the vacuum hose to the manifold vacuum port. Do not use soap. 6. Install a new check valve (1) to the brake booster hose that routes to the power brake booster auxiliary pump (3). Ensure the arrow on the check valve (1) ...

Brake Booster - Subaru Outback Forums
by moncoZ 0 Comments favorite 0 Viewed Download 0 Times

(2) Four brake booster installation nuts A: REMOVAL 1) Remove or disconnect the following parts in the engine compartment. (1) Disconnect the connector of brake fluid level gauge. (2) Remove the brake pipe from the master cylinder. (3) Remove the master cylinder installation nut. (1) CAUTION: In order to prevent the contact of the bracket and check valve, be sure to loosen the master cylinder mounting nut while holding the bracket with hand. Otherwise it may deform the bracket. (1) Check valve (2) Bracket (4) Disconnect the vacuum hose from brake booster. 2) Remove the following parts from the pedal bracket. (1) Snap pin and clevis pin Nut Clevis pin Snap pin Operating rod Brake pedal 3) Remove the brake booster while avoiding the brake pipe. NOTE: • Make sure that the booster shell and vacuum pipe are not subject to strong impacts. • Be careful not to drop the brake booster. If the booster is dropped, replace it. • Use special care when handling the operating rod. If excessive force is applied to the operating rod, the angle may change by r3°, and it may result in damage to power piston cylinder. • Be careful when placing the brake booster on floor. • Do not change the push rod length. CAUTION: • Do not disassemble the brake booster.

Safety Recall No. 983 Brake Booster Vacuum Hose

Safety Recall No. 983 Brake Booster Vacuum Hose Models 2000-2001 (PL) Dodge and Plymouth Neon NOTE: This recall applies only to the above vehicles equipped with a: Ø 2.0L engine (“C” in the 8th VIN Position) built through March 21, 2001 (MDH 0321XX) or a Ø 2.0L High Output engine (“F” in the 8th VIN Position) built through April 11, 2001 (MDH 0411XX). IMPORTANT: Some of the involved vehicles may be in dealer new vehicle inventory. Federal law requires you to stop sale and complete this recall service on these vehicles before retail delivery. Dealers should also consider this requirement to apply to used vehicle inventory and should perform this recall on vehicles in for service. Involved vehicles can be determined by using the DIAL VIP System. Subject The brake booster vacuum hose on about 350,000 of the above vehicles may swell due to oil contamination and become disconnected. A disconnected hose could cause a loss of power brake assist and an increase in engine idle speed. This can increase stopping distance and cause an accident without warning. Repair The brake booster vacuum hose must be replaced. © Copyright 2001, DaimlerChrysler Corporation, All Rights Reserved Safety Recall No. 983 -- Brake Booster Vacuum Hose Page 2 Parts Information Each dealer to whom vehicles in the recall were invoiced (or the current dealer at the same street address) will receive enough Brake Booster Vacuum Hoses to service about 10% of those vehicles. Dealers should determine which brake booster vacuum hose is required for each vehicle at the time appointments are scheduled to assure that the correct part is available when the customer arrives. The vacuum hose for the vehicle to be serviced may be determined by: Ø Using the part code in the third column of the VIN list along with the following table (involved dealers); Ø Using the VIN and part number list electronically transmitted to DIAL System Function 53 (involved dealers); or...

The ATE T50 Brake Booster - 190SL | 190 SL

Fifty percent less pedal force I n most of the models of the 1950s and 1960s, Mercedes-Benz provided a power brake booster manufactured by ATE. The booster does not pro- vide additional braking capacity, a common misconception, but rather reduces the pedal force required for braking. The power brake is a vacuum-assisted hydraulic component using the pressure difference between engine intake manifold vacuum and atmospheric pressure for its operation. The power unit increases the pressure created physically in the brake master cylinder so that the same braking effect can be produced with less pedal effort. With a brake booster installed, the pedal force required for braking is reduced by 50 percent. The ATE T50 Brake Booster uses vacuum to “boost” the hydraulic brakeline pressure. The booster contains a hydraulic cylinder, a large vacuum piston that presses against the hydraulic cylinder, and a control circuit that regulates the vacuum flow based on brake-line pressures. This technology had been well proven since the early 1900s, and the T50 has been exceptionally reliable over many years of use. The Booster in action The power booster is a very simple design requiring only a vacuum source to operate. In gasoline-engine cars, the engine provides a vacuum suitable for the boosters. Because diesel engines do not produce a vacuum, dieselpowered vehicles must use a separate vacuum pump. A vacuum hose from the intake manifold on the engine pulls air from both sides of the diaphragm when the engine is running. When the driver steps on the brake pedal, the input rod assembly in the booster moves forward, blocking off the vacuum port to the backside of the diaphragm and opening an atmospheric port that allows air to enter the back chamber. Suddenly, the diaphragm has vacuum pulling against one side and air pressure pushing on the other. The result is forward pressure that assists in pushing the input rod, which in turn pushes the piston in the master cylinder. The amount of power assist that’s provided by the booster depends on the size of the diaphragm and the amount of intake manifold vacuum produced by the engine. A larger diaphragm will increase the boost.

Drive Line / Universal
by Maradoni 0 Comments favorite 3 Viewed Download 0 Times

– Drivelines and Universal Joints Universal Joint Maintenance • Most factory-installed universal joints are sealed and don’t require periodic lubrication • After-market replacement joints are equipped with a grease fitting and must be greased periodically Drive Shaft Problem Diagnosis • Road testing – Vehicle should be driven while accelerating and decelerating as well as at various steady speeds – Vibrations caused by worn U-joints usually occur while accelerating Types and Causes of Vibrations • High speed vibrations – Usually caused by driveshaft imbalance • Vibrations during acceleration – Usually caused by worn double Cardan joint ball and socket • Low speed vibrations – Usually caused by improper operating angles Noise Diagnosis • Clunking noise while accelerating from a dead stop – Usually caused by worn or damaged U-joint – Can be caused by problems including excessive clearance between slip joint and extension housing • Squeaking noise – Often caused by worn or poorly lubricated U-joint Reasons for Universal Joint Failure • Lack of lubrication • Pushing another car • Towing a trailer • Changing gears abruptly • Carrying heavy loads Steps in Lubricating U-Joints 1. Wipe off the nozzle of the fitting 2. Attach the hose of the grease gun to the fitting 3. Pump grease slowly into the fitting 4. Stop pumping when grease appears at the bearing cups Inspecting the Drive Shaft • Check for fluid leaks • Check the U-joints for signs of rust or leakage • Check for movement in the joint while trying to turn the yoke and the shaft in opposite directions • Check the drive shaft for dents, missing weights, and undercoating or dirt...

2014 WORLD CUP PREVIEW - CIES Football Observatory

About the CIES Football Observatory The CIES Football Observatory is a unique project initiated in 2005 by Drs Raffaele Poli and Loïc Ravenel under the name of the Professional Football Players Observatory (PFPO). Since 2011 it is one of the cornerstones of the broader CIES Sports Observatory project, dedicated to the statistical analysis of sport in all its diversity. Two annual reports are published for football. In January, the Demographic Study presents an in-depth analysis of club composition and player characteristics in 31 top division leagues of UEFA member countries. In June, the Annual Review analyses clubs and players in the big-5 European leagues from a demographic, economic and pitch performance perspective. Methodological rigour coupled with a deep knowledge of football guarantee high quality analyses at competitive rates. For more information: www.football-observatory.com About the CIES The International Centre for Sports Studies (CIES) is an independent study centre located in Neuchâtel, Switzerland. It was created in 1995 as a joint venture between the Fédération Internationale de Football Association (FIFA), the University of Neuchâtel, the City and State of Neuchatel. Using a multi-disciplinary approach CIES provides research, top-level education and consulting services to the sports world with the aim of overcoming the complexities of sport in today’s society and improving how it is governed and managed. For more information: www.cies.ch

FLEXIBLE HOSE DATA SHEET_1 - EasyFlex

FLEXIBLE HOSE DATA SHEET EASYFLEX Flexible Sprinkler Drops are designed to significantly reduce labor and installation costs. By eliminating the need for pipe cutting and midline connections, you save valuable time and money. EASYFLEX Flexible Sprinkler Drops can be installed on almost any suspended commercial ceilings. The flexible hose allows for fast installation while our innovative brackets are simple and easy to install. Brackets for T-Bar ceiling grids, wall mount, metal studs, woodbeams, open hat channels, industrial ducts, and cleanrooms. No special tools required, and installation completed in a few easy steps. Flexible hoses come in braided or unbraided types, from 24” to 72” in length. EASYFLEX Flexible Sprinkler Drops Appliance Standards National Fire Protection Association (NFPA): - NFPA 13: Standard for the Installation of Sprinkler Systems - NFPA 13D: Standard for the Installation of Sprinkler Systems in One and Two-Family Dwellings and Manufactured Homes - NFPA 13R: Standard for Installation of Sprinkler Systems in residential Occupancies up to and including four stories in height American Society for Testing and Methods (ASTM): - ASTM C635: Standards specifications for the manufacture, performance, and testing of metal suspension systems for acoustical tile and lay-in panel ceilings...

« previous  123456789