SEARCH

Found 6175 related files. Current in page 1

2000 dodge durango aux fan control unit a c relay

Universal grinding machine for the most Demanding ... - Hardinge Inc.

KEL-VIVA Universal grinding machine for the most Demanding Applications KEL-VIVA The innovative grinding system 2 2 different wheelheads UR-wheelhead R-wheelhead Wheelhead with fixed intermediate section B-axis KEL-SET automatic grinding wheel measuring system (option) Heidenhain control system GRINDplusIT Windows 2000 2-processors control system C-axis for unround components and threads (option) Hydrostatics X- and Z-guideways no stick slip good damping Scale on upper table for setting-up of table assemblies metric imperial Prepared connecting plates for table flooding for diamond cooling for stabilizing of measuring unit Flushing of base pan for good conveyance of grinding dust prevents dirt deposits Precision with hydrostatics These CNC universal cylindrical grinding machines have been developed to satisfy the highest demand for quality. Intensive application studies and the use of stateof-the-art technology in development and production have resulted to this universal grinding machine. Hydrostatic guideways and a strict separation of the machine base from the assemblies, generating heat or vibration, provide superb precision and productivity. The excellent static and dynamic rigidity of the machine base permits a three-point set-ut. The KEL-VARIA therefore has no particular requirements on the building’s...

ZE15A Gear Grinding Machine for economical hard gear finishing of ...

In recent years the demands for precision machining of gears in automobile transmissions, for low noise and vibrations, has been ever increasing. Historically, conventional finish machining of gears was a pre-heat treatment operation typically by shaving. However, the requirement for higher precision forced a shift toward a post heat treatment operation using a generating process, which eliminates thermal distortion, thus enabling high quality and precision. The Mitsubishi ZE15A gear-grinding machine was duly developed for the high production line applications and launched into a domestic market typically dominated by European machines. (3) Ease of use for the user achieved via interactive dialog functions and full CNC control of all axes. This paper describes the principle of grinding and control for the ZE15A before presenting some machining examples.

rhode island college anchor notes - Rhode Island College Athletics

Rhode Island College Anchor Notes The Official Newsletter of Rhode Island College Intercollegiate Athletics Or visit us at: www.GoAnchormen.com Vol. X No. 4 Providence, Rhode Island Spring Review/Summer Preview June 2009 RIC Mourns the Passing of James Adams James “Jimmy” Adams Fund Established Rhode Island College was saddened by the loss of legendary former Head Men’s Basketball Coach James Adams who passed away on June 1 at the age of 73 after an illness. Adams spent 21 years at Rhode Island College, serving as an Assistant Athletic Director in addition to his coaching duties. He officially retired in September of 2000 and then went on to work part-time as a supervisor at the college’s Recreation Center until the fall of 2008. He will be inducted into Rhode Island College’s Athletic Hall of Fame this October. The James “Jimmy” Adams Fund has been established in his honor, with all proceeds benefitting RIC student-athletes. Please contact the RIC Athletic Department at (401) 456-8007 to make a contribution to the fund.

JANE WILLIAMS - Rhode Island College
by klinsy 0 Comments favorite 3 Viewed Download 0 Times

JANE WILLIAMS, PhD, RN Dean and Professor of Nursing School of Nursing, Rhode Island College 600 Mt. Pleasant Avenue, Providence, RI 02908 TEL: 401 456-9608: FAX: 401 456-8206 Email: jwilliams@ric.edu CURRENT EMPLOYMENT Rhode Island College, Dean and Professor of Nursing, School of Nursing, 1975-present; initial appointment as assistant professor, 1975; appointed Professor, 1995, Department Chairperson, 2000, and Dean, 2007. EDUCATION University of Rhode Island, College of Nursing, Kingston, Rhode Island, Ph.D., Nursing, 1995. New York University, School of Education, New York, New York, M.A., Major in Education and Minor in Nursing, 1968; University of Michigan, School of Nursing, Ann Arbor, Michigan, B.S.N. with Distinction, 1966. PUBLICATIONS Williams, J., Brumbaugh, M. & Vares, L., (2006), “Education to improve interdisciplinary practice of health care professionals: A pilot project”, Medicine & Health, Rhode Island, 89 (9), p. 312-313. Mosser, N., Williams, J. & Wood, C. (2006), “The use of progression testing throughout nursing programs: How two colleges promote success on NCLEX-RN”. Annual Review of Nursing Education. Vol.4, p. 305-319. Newman, M. and Williams, J. (2003) "Educating Nurses in Rhode Island: A lot of diversity in a little place", Journal of Cultural Diversity, Vol. 10, No. 3, p. 91-95. Williams, J., (2001) “The Clinical Notebook: Using Student Portfolios to Enhance Teaching and Learning, Journal of Nursing Education. Vol. 40, p. 135-137. Ferszt, G., Massotti, E., Miller, J. & Williams, J. (2000) “Art on Rounds: Research Study of an in-patient oncology unit”, Illness Crisis and Loss. Vol. 8, No. 2, pp. 189-199. Williams, J. (1999) “When Interns Meet Managed Care” [Letter to the Editor]. New York Times, p. 30A. Williams, J., Wood, C., & Cunningham-Warburton, P. (1999) “A Narrative Study of Chemotherapy-Induced Alopecia”. Oncology Nursing Forum. Vol. 26, pp. 1463-1468. Willliams, J. (1999) “Health Policy Tool Kit Helps Students to Get Involved”. ONS Newsletter, 14 (9) p 5.

HYDRO-BOOST BRAKE BOOSTER Installation Guide REMOVING ...

930394-52 Rev. 12/22/05 4:21 PM Page 1 HYDRO-BOOST BRAKE BOOSTER Installation Guide 4. Enable ignition system and start the engine. 7. Check fluid level and add fluid if needed. 5. Turn the steering wheel from stop to stop several times. Do not hold it against the stop. 8. Again start engine and turn steering wheel from stop to stop several times (avoid turning fully against stops as much as possible). Recheck fluid level and fill as required. If there is evidence of fluid foaming, turn off engine and wait an hour for foam to clear. Lacks Power Assist Booster or Pedal Chatters X X X Looses Reserve Pressure HAIRPIN CLIP BRAKE PEDAL PUSHROD X PUSHROD SPACER PUSHROD BUSHING 6. Loosen the locknuts holding the HydroBoost unit to the firewall and then slide the linkage, nylon washers and brushing off the pedal pin. 4. Disconnect all hydraulic lines from the Hydro-Boost unit (pressure, steering gear and return lines). PRESSURE LINE MASTER CYLINDER HYDRO-BOOST SPACER X X X BRAKE LINES DO NOT DISCONNECT JDA356 STOP-LIGHT SWITCH 3. Separate the master cylinder from the mounting studs. N OT E : DO NOT disconnect the brake lines from the master cylinder unless necessary to avoid bending or damaging those lines. X Pedal Returns Slowly 5. Disconnect the Hydro-Boost pushrod linkage from the brake pedal. NOT E : It may be necessary to remove the stoplight switch from the brake pedal. If so, unplug the stoplight switch wires, remove the hairpin retainer, slide the switch off the pedal pin just far enough to permit removing the switch from the pin. Do not damage the switch. N OT E : Before beginning work, be sure vehicle is parked in a level area and that wheels are chocked to prevent unintentional movement. Read all of these instructions before attempting to install the HydroBoost unit. 2. Remove the nuts attaching the master cylinder to the Hydro-Boost unit.

Safety Recall No. 983 Brake Booster Vacuum Hose

Safety Recall No. 983 Brake Booster Vacuum Hose Models 2000-2001 (PL) Dodge and Plymouth Neon NOTE: This recall applies only to the above vehicles equipped with a: Ø 2.0L engine (“C” in the 8th VIN Position) built through March 21, 2001 (MDH 0321XX) or a Ø 2.0L High Output engine (“F” in the 8th VIN Position) built through April 11, 2001 (MDH 0411XX). IMPORTANT: Some of the involved vehicles may be in dealer new vehicle inventory. Federal law requires you to stop sale and complete this recall service on these vehicles before retail delivery. Dealers should also consider this requirement to apply to used vehicle inventory and should perform this recall on vehicles in for service. Involved vehicles can be determined by using the DIAL VIP System. Subject The brake booster vacuum hose on about 350,000 of the above vehicles may swell due to oil contamination and become disconnected. A disconnected hose could cause a loss of power brake assist and an increase in engine idle speed. This can increase stopping distance and cause an accident without warning. Repair The brake booster vacuum hose must be replaced. © Copyright 2001, DaimlerChrysler Corporation, All Rights Reserved Safety Recall No. 983 -- Brake Booster Vacuum Hose Page 2 Parts Information Each dealer to whom vehicles in the recall were invoiced (or the current dealer at the same street address) will receive enough Brake Booster Vacuum Hoses to service about 10% of those vehicles. Dealers should determine which brake booster vacuum hose is required for each vehicle at the time appointments are scheduled to assure that the correct part is available when the customer arrives. The vacuum hose for the vehicle to be serviced may be determined by: Ø Using the part code in the third column of the VIN list along with the following table (involved dealers); Ø Using the VIN and part number list electronically transmitted to DIAL System Function 53 (involved dealers); or...

The ATE T50 Brake Booster - 190SL | 190 SL

Fifty percent less pedal force I n most of the models of the 1950s and 1960s, Mercedes-Benz provided a power brake booster manufactured by ATE. The booster does not pro- vide additional braking capacity, a common misconception, but rather reduces the pedal force required for braking. The power brake is a vacuum-assisted hydraulic component using the pressure difference between engine intake manifold vacuum and atmospheric pressure for its operation. The power unit increases the pressure created physically in the brake master cylinder so that the same braking effect can be produced with less pedal effort. With a brake booster installed, the pedal force required for braking is reduced by 50 percent. The ATE T50 Brake Booster uses vacuum to “boost” the hydraulic brakeline pressure. The booster contains a hydraulic cylinder, a large vacuum piston that presses against the hydraulic cylinder, and a control circuit that regulates the vacuum flow based on brake-line pressures. This technology had been well proven since the early 1900s, and the T50 has been exceptionally reliable over many years of use. The Booster in action The power booster is a very simple design requiring only a vacuum source to operate. In gasoline-engine cars, the engine provides a vacuum suitable for the boosters. Because diesel engines do not produce a vacuum, dieselpowered vehicles must use a separate vacuum pump. A vacuum hose from the intake manifold on the engine pulls air from both sides of the diaphragm when the engine is running. When the driver steps on the brake pedal, the input rod assembly in the booster moves forward, blocking off the vacuum port to the backside of the diaphragm and opening an atmospheric port that allows air to enter the back chamber. Suddenly, the diaphragm has vacuum pulling against one side and air pressure pushing on the other. The result is forward pressure that assists in pushing the input rod, which in turn pushes the piston in the master cylinder. The amount of power assist that’s provided by the booster depends on the size of the diaphragm and the amount of intake manifold vacuum produced by the engine. A larger diaphragm will increase the boost.

Introduction to Brake Systems – Study Guide

Introduction Everybody knows that when you press your foot on the brake pedal the vehicle is supposed to stop. But how does the pressure from your foot get to the wheels with enough force to stop a heavy vehicle? In the following sections, we will study the systems and components required to allow brakes to work effectively. Course Objectives Upon completion of this course, technicians should understand and be able to apply their knowledge of: • • • • • • • • • • • • Brake functions and components Split hydraulic systems Master cylinder operations Balance control systems Power brake booster systems Disc brake operation Micrometer reading Drum brake operation Brake fluids Brake bleeding operations Brake lines and hoses Basic diagnosis Using the Job Sheets As you proceed through the online module, on some pages you will find links that will open a window with a printable procedure or job sheet containing hands-on lab activities based on the NATEF standards related to the content you are studying. When you come upon a procedure or job sheet link, click on it and print the job sheet for completion in the shop. See your instructor for guidance in completing the job sheets. Some jobs sheets will require supplemental materials such as a vehicle service manual, equipment manual, or other references. Brake System Functions Automotive brakes are designed to slow and stop a vehicle by transforming kinetic (motion) energy into heat energy. As the brake linings contact the drums/rotors they create friction which produces the heat energy. The intensity of the heat is proportional to the vehicle speed, the weight of the vehicle, and the quickness of the stop. Faster speeds, heavier vehicles, and quicker stops equal more heat. Automotive brake systems can be broken down into several different sub-systems (fig. 1): • Apply system • Boost system • Hydraulic system • Wheel brakes • Balance control system • Warning system (fig. 1) Base Brake Systems .

HYDRAULICS & BRAKE BOOSTER CATALOG - Aisin

The clutch master cylinder is a device that transforms mechanical force into hydraulic pressure. As the driver presses the clutch pedal, the pedal lever applies force to the clutch master cylinder which transmits hydraulic pressure to the clutch release (slave) cylinder that disconnects engine power to the transmission. Structure and Components [Conventional Type] Inlet Union Oil Spill Hole Aluminum Body Flare Nut Pipe Joint Boot Spring Primary Cup Resin Piston Push Rod Rel Secondary Cup Spring Metallic Clevis Damper Stud Bolt The clutch master cylinder structure consists of the piston, cups, and springs, built within a precision machined body. The primary cup, positioned on the leading side of the body, functions to create hydraulic pressure when fluid is forced inside by the piston. Located on the trailing side is the secondary cup, which guides the piston and prevents fluid from leaking. When the clutch pedal is pressed, the primary cup is blocked away by the piston from the oil spill port leading to the reservoir tank, pressure in the cylinder rises as the fluid is fed through the pipeline. When the clutch pedal is released, the hydraulic pressure and the force of the return spring pulls back the piston to relieve fluid back into the reservoir. The clutch master cylinder is what provides the necessary force to control the application of drivetrain power. 2 Clutch Master Cylinder Variations Clutch Master Cylinder Variations Conventional Port-less Type Stand Alone / Integrated Reservoir Type Types With and Without Stud Bolts Types With and Without Clevis Damper Types With and Without Clutch Booster ...

Delta Worldwide Timetable - AirTimes

TABLE OF CONTENTS General Information 2-4 Using the Worldwide Timetable 5 Global Alliance and Airline Partners 6-7 Flight Schedules 8 -143 Train Schedules 144 U.S. Offices 145 - 149 International Offices 150 - 154 Service Highlights New Service Atlanta 1 roundtrip November 1 Palm Springs 1 roundtrip December 1 Jackson Hole 1 roundtrip December 14;Sat/Sun service only 2 roundtrips December 1 St. Thomas 1 roundtrip November 1 Ft. Myers DOMESTIC RESERVATIONS Montego Bay 1 roundtrip November 1 Salt Lake City Jackson Hole Additional Service Atlanta 800-221-1212 Delta Express Additional Service INTERNATIONAL RESERVATIONS Islip From U.S., Puerto Rico, Virgin Islands 800-241-4141 From Canada 800-221-1212 Ft. Lauderdale 1 roundtrip November 1 New York (JFK) 800-511-9629 RESERVATIONS IN JAPANESE 800-327-2850 DELTA EXPRESS 866-2 FLY DLX DELTA SHUTTLE 800-933-5935 DELTA VACATIONS™ 800-872-7786 ARRIVAL/DEPARTURE 800-325-1999 CARGO BOOKING, TRACKING/TRACING 800-DL-CARGO DELTA DASH 800-DL-CARGO SKYMILES INFORMATION 800-323-2323 BAGGAGE 800-325-8224 HEARING AND SPEECH IMPAIRED 800-831-4488 Telephone numbers in this publication are subject to monitoring for quality control purposes. 2 roundtrips November 1 Orlando RESERVAS EN ESPAÑOL Ft. Lauderdale 1 roundtrip November 1 General Information General Information continued DELTA PROGRAMS AND SERVICES SAFETY

« previous  123456789